Introduction to Statistical Investigations,
ty ty ty ty
nd
2 Edition Nathan Tintle; Beth L. Chance
ty ty ty ty ty ty
Chapters 1 - 11, Complete
ty ty ty ty ty
FOR INSTRUCTOR USE
ty ty
ONLY
ty
,TABLE OF CONTENTS
ty ty ty
Chapter 1 – Significance: How Strong is the Evidence
ty ty ty ty ty ty ty ty ty
Chapter 2 – Generalization: How Broadly Do the Results Apply?
ty ty ty ty ty ty ty ty ty
ty
Chapter 3 – Estimation: How Large is the Effect?
ty ty ty ty ty ty ty ty ty
Chapter 4 – Causation: Can We Say What Caused the Effect?
ty ty ty ty ty ty ty ty ty ty ty
Chapter 5 – Comparing Two Proportions
ty ty ty ty ty ty
Chapter 6 – Comparing Two Means
ty ty ty ty ty ty
Chapter 7 – Paired Data: One Quantitative Variable
ty ty ty ty ty ty ty ty
Chapter 8 – Comparing More Than Two Proportions
ty ty ty ty ty ty ty ty
Chapter 9 – Comparing More Than Two Means
ty ty ty ty ty ty ty ty
Chapter 10 – Two Quantitative Variables
ty ty ty ty ty ty
Chapter 11 – Modeling Randomness
ty ty ty ty
FOR INSTRUCTOR USE
ty ty
ONLY
ty
,Chapter 1 t y
Note: ty ty ty TE = t y t y Text entry ty TE-N = Text entry - ty ty ty ty
ty NumericMa = yt t y t y Matching MS = Multiple select
t y ty ty
MC = ty t y Multiple choice ty TF = True-FalseE
ty ty yt
ty = Easy, M = Medium, H = Hard
ty ty ty ty ty ty ty
CHAPTER 1 LEARNING OBJECTIVES ty ty ty
CLO1-1: Use the chance model to determine whether an observed statistic is unlikely to occur.
ty ty ty ty ty ty ty ty ty ty ty ty ty ty
CLO1-2: Calculate and interpret a p-value, and state the strength of evidence it provides againstthe
ty ty ty ty ty ty ty ty ty ty ty ty ty ty yt
null hypothesis.
ty ty
CLO1-3: Calculate a standardized statistic for a single proportion and evaluate the strength
ty ty ty ty ty ty ty ty ty ty ty ty
ofevidence it provides against a null hypothesis.
ty yt ty ty ty ty ty ty
CLO1-4: Describe how the distance of the observed statistic from the parameter value specifiedby
ty ty ty ty ty ty ty ty ty ty ty ty ty yt
the null hypothesis, sample size, and one- vs. two-sided tests affect the strength of
ty ty ty ty ty ty ty ty ty ty ty ty ty ty
evidence against the null hypothesis.
ty ty ty ty ty
CLO1-5: Describe how to carry out a theory-based, one-proportion z-test.
ty ty ty ty ty ty ty ty ty
Section 1.1: Introduction to Chance Models ty ty ty ty ty
LO1.1-1: Recognize the difference between parameters and statistics.
ty ty ty ty ty ty ty
LO1.1-2: Describe how to use coin tossing to simulate outcomes from a chance model of the ran-
ty ty ty ty ty ty ty ty ty ty ty ty ty ty ty ty
dom choice between two events.
yt ty ty ty ty
LO1.1-3: Use the One Proportion applet to carry out the coin tossing simulation.
ty ty ty ty ty ty ty ty ty ty ty ty
LO1.1-4: Identify whether or not study results are statistically significant and whether or not
ty ty ty ty ty ty ty ty ty ty ty ty ty
thechance model is a plausible explanation for the data.
ty yt ty ty ty ty ty ty ty ty
LO1.1-5: Implement the 3S strategy: find a statistic, simulate results from a chance model,
ty ty ty ty ty ty ty ty ty ty ty ty ty
andcomment on strength of evidence against observed study results happening by chance
ty yt ty ty ty ty ty ty ty ty ty ty ty
alone. ty
LO1.1-6: Differentiate between saying the chance model is plausible and the chance model is
ty ty ty ty ty ty ty ty ty ty ty ty ty
thecorrect explanation for the observed data.
ty yt ty ty ty ty ty
FOR INSTRUCTOR USE ty ty
ONLY
ty
, 1-2 Test Bank for Introduction to Statistical Investigations, 2nd Edition
ty ty ty ty ty ty ty ty
Questions 1 through 4:
ty ty ty
Do red uniform wearers tend to win more often than those wearing blue uniforms in
ty ty ty ty ty ty ty ty ty ty ty ty ty ty
Taekwondo matches where competitors are randomly assigned to wear either a red or
ty ty ty ty ty ty ty ty ty ty ty ty ty
blue uniform? In a sample of 80 Taekwondo matches, there were 45 matches where
ty ty ty ty ty ty ty ty ty ty ty ty ty ty
thered uniform wearer won.
ty yt ty ty ty
1. What is the parameter of interest for this study?
ty ty ty ty ty ty ty ty
A. The long-run proportion of Taekwondo matches in which the red uniform
ty ty ty ty ty ty ty ty ty ty
wearerwins ty yt
B. The proportion of matches in which the red uniform wearer wins in a sample of
ty ty ty ty ty ty ty ty ty ty ty ty ty ty
80Taekwondo matches ty yt ty
C. Whether the red uniform wearer wins a match ty ty ty ty ty ty ty
D. 0.50 ty
Ans: A; LO: 1.1-1; Difficulty: Easy; Type: MC
ty ty ty ty ty ty ty
2. What is the statistic for this study?
ty ty ty ty ty ty
A. The long-run proportion of Taekwondo matches in which the red uniform
ty ty ty ty ty ty ty ty ty ty
wearerwins ty yt
B. The proportion of matches in which the red uniform wearer wins in a sample of
ty ty ty ty ty ty ty ty ty ty ty ty ty ty
80Taekwondo matches ty yt ty
C. Whether the red uniform wearer wins a match ty ty ty ty ty ty ty
D. 0.50 ty
Ans: B; LO: 1.1-1; Difficulty: Easy; Type: MC
ty ty ty ty ty ty ty
3. Given below is the simulated distribution of the number of ―red wins‖ that could happen
ty ty ty ty ty ty ty ty ty ty ty ty ty ty
by chance alone in a sample of 80 matches. Based on this simulation, is our observed result
ty yt ty ty ty ty ty ty ty ty ty ty ty ty ty ty ty
statistically significant?
ty ty
A. Yes, since 45 is larger than 40. ty ty ty ty ty ty
B. Yes, since the height of the dotplot above 45 is smaller than the height of
ty ty ty ty ty ty ty ty ty ty ty ty ty ty
thedotplot above 40. ty yt ty ty
C. No, since 45 is a fairly typical outcome if the color of the winner‘s uniform
ty ty ty ty ty ty ty ty ty ty ty ty ty ty
FOR INSTRUCTOR USE ty ty
ONLY ty