100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Answer key to introduction to linear algebra 6th edition by Gilbert strange (1)

Rating
-
Sold
-
Pages
215
Grade
A+
Uploaded on
16-01-2026
Written in
2025/2026

Solution Manual for Answer key to introduction to linear algebra 6th edition by Gilbert strange (1) Solution Manual for Answer key to introduction to linear algebra 6th edition by Gilbert strange (1)

Institution
Introduction To Linear Algebra
Course
Introduction to linear algebra











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Introduction to linear algebra
Course
Introduction to linear algebra

Document information

Uploaded on
January 16, 2026
Number of pages
215
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

ALL 10 CHAPTERS COVERED




Answer key

,2 Solutions to Exercises

Problem Set 1.1, page 8
1 The combinations give (a) a line in R3 (b) a plane in R3 (c) all of R3.

2 v + w = (2, 3) and v − w = (6, −1) will be the diagonals of the parallelogram with
v and w as two sides going out from (0, 0).

3 This problem gives the diagonals v + w and v − w of the parallelogram and asks for
the sides: The opposite of Problem 2. In this example v = (3, 3) and w = (2, −2).

4 3v + w = (7, 5) and cv + dw = (2c + d, c + 2d).

5 u+v = (−2, 3, 1) and u+v+w = (0, 0, 0) and 2u+2v+w = ( add first answers) =
(−2, 3, 1). The vectors u, v, w are in the same plane because a combination gives
(0, 0, 0). Stated another way: u = −v − w is in the plane of v and w.

6 The components of every cv + dw add to zero because the components of v and of w

add to zero. c = 3 and d = 9 give (3, 3, −6). There is no solution to cv+dw = (3, 3, 6)
because 3 + 3 + 6 is not zero.

7 The nine combinations c(2, 1) + d(0, 1) with c = 0, 1, 2 and d = (0, 1, 2) will lie on a
lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.

8 The other diagonal is v − w (or else w − v). Adding diagonals gives 2v (or 2w).

9 The fourth corner can be (4, 4) or (4, 0) or (−2, 2). Three possible parallelograms!

10 i − j = (1, 1, 0) is in the base (x-y plane). i + j + k = (1, 1, 1) is the opposite corner
from (0, 0, 0). Points in the cube have 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.
11 Four more corners (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is ( 1 , 1 , 1 ).
2 2 2
Centers of faces are ( 1 , 1 , 0), ( 1 , 1 , 1) and (0, 1 , 1 ), (1, 1 , 1 ) and ( 1 , 0, 1 ), ( 1 , 1, 1 ).
2 2 2 2 2 2 2 2 2 2 2 2

12 The combinations of i = (1, 0, 0) and i + j = (1, 1, 0) fill the xy plane in xyz space.

13 Sum = zero vector. Sum = −2:00 vector = 8:00 vector. 2:00 is 30◦ from horizontal

= (cos π , sin π ) = ( 3/2, 1/2).
6 6

14 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors
changes from 0 to 12j = (0, 12).

,Solutions to Exercises 3

3
1
15 The point v + w is three-fourths of the way to v starting from w. The vector
4 4
1 1 1 1
v + w is halfway to u = v + w. The vector v + w is 2u (the far corner of the
4 4 2 2
parallelogram).

16 All combinations with c + d = 1 are on the line that passes through v and w.
The point V = −v + 2w is on that line but it is beyond w.
17 All vectors cv + cw are on the line passing through (0, 0) and u = 1 v + 1 w. That
2 2

line continues out beyond v + w and back beyond (0, 0). With c ≥ 0, half of this line
is removed, leaving a ray that starts at (0, 0).

18 The combinations cv + dw with 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 fill the parallelogram with
sides v and w. For example, if v = (1, 0) and w = (0, 1) then cv + dw fills the unit
square. But when v = (a, 0) and w = (b, 0) these combinations only fill a segment of a
line.

19 With c ≥ 0 and d ≥ 0 we get the infinite “cone” or “wedge” between v and w. For
example, if v = (1, 0) and w = (0, 1), then the cone is the whole quadrant x ≥ 0, y ≥
0. Question: What if w = −v? The cone opens to a half-space. But the combinations
of v = (1, 0) and w = (−1, 0) only fill a line.
20 (a) 1u + 1 v + 1 w is the center of the triangle between u, v and w; 1 u + 1 w lies
3 3 3 2 2
between u and w (b) To fill the triangle keep c ≥ 0, d ≥ 0, e ≥ 0, and c + d + e = 1.

21 The sum is (v − u) +(w − v) +(u − w) = zero vector. Those three sides of a triangle
are in the same plane!
22 The vector 1 (u + v + w) is outside the pyramid because c + d + e = 1 + 1+ 1 > 1.
2 2 2 2

23 All vectors are combinations of u, v, w as drawn (not in the same plane). Start by
seeing that cu + dv fills a plane, then adding ew fills all of R3.

24 The combinations of u and v fill one plane. The combinations of v and w fill another
plane. Those planes meet in a line: only the vectors cv are in both planes.

25 (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose
u and v in different directions. A combination like w = u + v is in the same plane.

, 4 Solutions to Exercises

26 Two equations come from the two components: c + 3d = 14 and 2c + d = 8. The
solution is c = 2 and d = 4. Then 2(1, 2) + 4(3, 1) = (14, 8).

27 A four-dimensional cube has 24 = 16 corners and 2 · 4 = 8 three-dimensional faces
and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.

28 There are 6 unknown numbers v1, v2, v3, w1, w2, w3. The six equations come from the
components of v + w = (4, 5, 6) and v − w = (2, 5, 8). Add to find 2v = (6, 10, 14)
so v = (3, 5, 7) and w = (1, 0, −1).

29 Fact : For any three vectors u, v, w in the plane, some combination cu + dv + ew is the
zero vector (beyond the obvious c = d = e = 0). So if there is one combination Cu +
Dv + Ew that produces b, there will be many more—just add c, d, e or 2c, 2d, 2e to the
particular solution C, D, E.

The example has 3u − 2v + w = 3(1, 3) − 2(2, 7) + 1(1, 5) = (0, 0). It also has
−2u + 1v + 0w = b = (0, 1). Adding gives u − v + w = (0, 1). In this case c, d, e
equal 3, −2, 1 and C, D, E = −2, 1, 0.

Could another example have u, v, w that could NOT combine to produce b ? Yes. The
vectors (1, 1), (2, 2), (3, 3) are on a line and no combination produces b. We can easily
solve cu + dv + ew = 0 but not Cu + Dv + Ew = b.

30 The combinations of v and w fill the plane unless v and w lie on the same line through (0,
0). Four vectors whose combinations fill 4-dimensional space: one example is the
“standard basis” (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1).

31 The equations cu + dv + ew = b are


2c −d = 1 So d = 2e c = 3/4
−c +2d −e = 0 then c = 3e d = 2/4

−d +2e = 0 then 4e = 1 e = 1/4
$21.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
ScholarSource2020
5.0
(1)

Get to know the seller

Seller avatar
ScholarSource2020 Chamberlain School Of Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
5
Member since
5 months
Number of followers
4
Documents
643
Last sold
2 months ago
TESTBANKS & A+SOLUTIONS MANUAL

BEST HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ or EXAM WITH GUARANTEE OF A Am an expert on major courses especially; psychology,Nursing, Human resource Management.Assisting students with quality work is my first priority. I ensure scholarly standards in my documents. I assure a GOOD GRADE if you will use my work.All the best in your Studies,

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions