100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Samenvatting - toegepaste multivariate analyse (UA_2300PSWMVA_2526)

Rating
-
Sold
-
Pages
90
Uploaded on
14-01-2026
Written in
2025/2026

Samenvatting van powerpoints en college aantekingen van toegepaste multivariate analyse ()

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 14, 2026
Number of pages
90
Written in
2025/2026
Type
Summary

Subjects

Content preview

Inhoud
1 Leren werken met SAS........................................................................................ 1
1.1 We gaan van start......................................................................................... 1
1.2 SAS databestanden: basisprincipes...............................................................1
1.3 SAS syntax: basisprincipes............................................................................2
1.4 Folders, libraries en verwijzingen..................................................................3
1.5 Variabelen analyseklaar maken.....................................................................5
2 Structurele vergelijkingsmodellen – Inleiding......................................................6
2.1 Wat is het doel?............................................................................................. 6
2.2 Vereisten voor SEM........................................................................................ 7
2.2.1 Meetniveau............................................................................................. 7
2.2.2 Missings.................................................................................................. 8
2.2.3 Multivariate normaliteit...........................................................................8
3 Kansenverdelingen en hypothesetoetsen............................................................9
3.1 Inleiding: Hoe groot is de kans? (en waarom is dat belangrijk?)....................9
3.2 Kansverdelingen............................................................................................ 9
3.3 Hypothesetoetsen....................................................................................... 10
4 Structurele vergelijkingsmodellen – padanalyse................................................11
4.1 Padanalyse uitvoeren met regressie............................................................11
4.2 De regels van Hatcher................................................................................. 12
4.3 Output......................................................................................................... 14
4.3.1 Inlezen van het model...........................................................................14
4.3.2 Identificatie van het model...................................................................15
4.3.3 Resultaten............................................................................................. 15
4.4 Output van een niet-gesatureerd model.....................................................17
4.4.1 Identificatie van het model...................................................................17
4.4.2 Fit van het model.................................................................................. 18
4.4.3 TOT SLOT: Kan het model (statistisch) verbeterd worden ?...................19
5 Structurele vergelijkingsmodellen: Meetmodel..................................................22
5.1 Schattingsmethoden in CALIS....................................................................22
5.2 Exploratieve vs. confirmatieve factoranalyse..............................................23
5.3 De regels van Hatcher................................................................................. 23
5.4 Output......................................................................................................... 25
5.5 Validiteits- en betrouwbaarheidstesten.......................................................30
5.5.1 Indicatorbetrouwbaarheid.....................................................................30
5.5.2 Samengestelde betrouwbaarheid..........................................................30

1

, 5.5.3 Verklaarde variantietoets......................................................................31
5.5.4 Convergentievaliditeit...........................................................................31
5.5.5 Discriminantvaliditeit............................................................................ 31
6 Structurele vergelijkingsmodellen: structureel model.......................................34
6.1 Van meetmodel naar structureel model......................................................34
6.2 De regels van Hatcher................................................................................. 34
6.3 Output......................................................................................................... 36
6.3.1 Fit van het model.................................................................................. 36
6.3.2 Resultaten............................................................................................. 36
6.4 Modeltoetsen............................................................................................... 38
6.4.1 Bijkomend: toetsen op het structureel model.......................................41
6.5 Modelvergelijking........................................................................................ 43
7 Multilevel-analyse: inleiding en theorie.............................................................45
7.1 Inleiding: Simpson’s paradox.......................................................................45
7.2 Eigenschappen van geclusterde data..........................................................45
7.2.1 Levels.................................................................................................... 45
7.2.2 Hiërarchie.............................................................................................. 45
7.2.3 Balans................................................................................................... 45
7.2.4 Onderzoeksdesign................................................................................. 46
7.3 OLS en clustering: foute manieren om met geclusterde data om te gaan. .46
7.4 van OLS-regressie naar het multilevel-model..............................................47
7.4.1 Basisidee............................................................................................... 47
7.4.2 Lineaire regressie op meerder levels.....................................................49
7.4.3 Multilevelmodel..................................................................................... 50
7.4.4 Uitbreiding van het algemeen multilevel-model....................................52
8 Mulitlevel-analyse: multilevel modellen.............................................................54
8.1 Het Multilevel Basismodel........................................................................... 54
8.2 Overzicht ML modellen................................................................................ 54
8.2.1 Null Random Intercept Model................................................................54
8.2.2 Random Intercept Model.......................................................................55
8.2.3 Fully Random Model.............................................................................. 56
8.2.4 Fully Random Model met onafhankelijke variabelen op level 2.............58
9 Multilevel-analyse: multilevel in SAS – stap voor stap.......................................59
9.1 Overzicht anlyse-stratgie............................................................................ 59
9.2 Inleiding....................................................................................................... 59
9.3 FASE 1: voorbereiding................................................................................. 60
9.3.1 STAP 1: data voorbereiden....................................................................60


2

, 9.4 FASE 2: variantie-decompositie-modellen...................................................60
9.4.1 STAP2: Null random intercept model.....................................................60
9.4.2 STAP3: Random intercept model met level-1 predictoren.....................63
9.4.3 STAP4: Toevoegen van level-2 predictoren aan stap 3..........................64
9.5 FASE 3:........................................................................................................ 66
9.5.1 STAP 5: testen van Random Slopes level 1...........................................66
9.5.2 STAP 6: Testen van significante Random Slopes level 1........................68
9.5.3 STAP 7: Testen van Random Slopes mét level 2 predictoren.................68
9.5.4 STAP 8: Reduceren van parameters in variantie-covariantiematrix.......69
9.6 FASE 4:........................................................................................................ 70
9.6.1 STAP 9: Testen cross-level interacties....................................................70
9.6.2 STAP 10: Wijzigen schattingsmethode en vergelijken modellen............71
9.6.3 STAP 11: Standaardiseren.....................................................................74
10 Longitudinale analyse...................................................................................... 76
10.1 Cross-sectioneel vs. Longitudinaal............................................................76
10.1.1 Soorten longitudinale analyse.............................................................76
10.2 Designs – Causaliteit – Experimenten........................................................77
10.2.1 Designs (opzet)................................................................................... 77
10.2.2 RETROSPEECTIEF DESIGN...................................................................77
10.2.3 PROSPECTIEF DESIGN.........................................................................77
10.2.4 Schattingsmethoden bij experimentele designs..................................79
10.3 Paneldata.................................................................................................. 80
10.3.1 Wat zijn paneldata?............................................................................. 80
10.4 Modellen om paneldata te analyseren......................................................81
10.4.1 Pooled model....................................................................................... 81
10.4.2 Fixed effects model............................................................................. 81
11 Regels van Hatcher: gestructureerd................................................................86




3

, Toegepaste Multivariate Analyse
 Doel
o Inzicht krijgen in gevorderde statistische technieken
o Eerste ervaring opdoen met deze technieken
o (Resultaten van) deze technieken begrijpen en kunnen toelichten
 Examen
o Theoretische kennis over technieken + interpretatie van syntax en
output
o Vier vragen
 SAS (syntax)
 Longitudinale analyse (theoretisch, gaan we niet in praktijk
mee aan de slag)
 Structurele vergelijkingsmodellen
 Multilevelanalyse


1 Leren werken met SAS
1.1 We gaan van start
 We schreven een SAS-programma met twee programmastappen
o PROC FREQ -> tabel (hier: frequentietabel)
o PROC SGPLOT -> grafiek (hier: histogram)
 Het Log-venster gaf geen errors of warnings over de syntax, slechts notes
over de uitgevoerde procedures
 Het Results-venster toonde de gevraagde tabel en grafiek

1.2 SAS databestanden: basisprincipes
 Databestanden zijn bestanden
 Je gebruikt databestanden via SAS-Libraries of rechtstreeks via Home
 Er zijn tijdelijke en permanente databestanden
o Permanente databestanden = in SAS Libraries of home
 Basisbestanden, niet mee knoeien!
o Tijdelijke databestanden = in de WORK Library
 Werkbestanden, verdwijnen bij afsluiten SAS
o Naamgeving databestanden = Library PUNT bestandsnaam
 work.class = TIJDELIJK
 sashelp.class = PERMANENT
o  We zetten permanente databestanden altijd om naar tijdelijke
databestanden alvorens er in te werken!
o VB:

 1st. Waar wil je de set opslaan, wegschrijven
‘opslaan als’
 2de. ‘set’ welk bestand wil je dan op die andere
plek opslaan?
 3de. Run

1
$19.13
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
kaatdebacker

Get to know the seller

Seller avatar
kaatdebacker Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
New on Stuvia
Member since
1 day
Number of followers
0
Documents
1
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions