100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Complete Solution Manual for A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis G. Zill

Rating
-
Sold
-
Pages
1130
Grade
A+
Uploaded on
27-12-2025
Written in
2025/2026

This comprehensive solution manual covers all chapters (1–9) of A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis G. Zill. Each chapter includes detailed, step-by-step solutions and answers to all exercises, including: Chapter 1: Introduction to Differential Equations — Order, linearity, solutions, modeling, and applications Chapter 2: First-Order Differential Equations — Separation of variables, exact equations, integrating factors, linear models Later Chapters: Higher-order equations, systems of equations, series solutions, Laplace transforms, and more Ideal for students, instructors, and self-learners, this manual provides clear, worked-out solutions to reinforce understanding and support exam preparation. All answers are thoroughly explained with proper notation and methodology, following the textbook’s structure.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Course

Document information

Uploaded on
December 27, 2025
Number of pages
1130
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

A First Course in Differential
V V V V V


Equations with Modeling Ap
V V V


plications, 12th Edition by De
V V V V


nnis G. Zill V V




CompleteVChapterVSolutionsVManual
VareVincludedV(ChV1VtoV9)




** Immediate Download
V V


** Swift Response
V V


** All Chapters included
V V V

,SolutionVandVAnswerVGuide:V Zill,VDIFFERENTIALVEQUATIONSVWithVMODELINGVAPPLICATIONSV2024,V9780357760192;VChapt
erV#1:
IntroductionVtoVDifferentialVEquations


Solution and Answer Guide V V V

ZILL,VDIFFERENTIALVEQUATIONSVWITHVMODELINGVAPPLICATIONSV2024,
9780357760192;VCHAPTERV#1:VINTRODUCTIONVTOVDIFFERENTIALVEQUATIONS


TABLEVOFVCONTENTS
EndV ofV SectionV Solutions .........................................................................................................................1
ExercisesV1.1 .......................................................................................................................... 1
ExercisesV1.2 ........................................................................................................................ 14
ExercisesV1.3 ........................................................................................................................ 22
ChapterV 1V inV ReviewV Solutions ........................................................................................................... 30




ENDV OFV SECTIONV SOLUTIONS
EXERCISESV 1.1
1. SecondVorder;Vlinear
2. ThirdVorder;VnonlinearVbecauseVofV(dy/dx)4
3. FourthVorder;Vlinear
4. SecondVorder;VnonlinearVbecauseVofVcos(rV +Vu)

5. SecondVorder;VnonlinearVbecauseV ofV(dy/dx)2V or 1V +V (dy/dx)2
6. SecondVorder;VnonlinearVbecauseVofVR2
7. ThirdVorder;Vlinear
8. SecondVorder;VnonlinearVbecauseVofVx˙V2
9. FirstVorder;VnonlinearVbecauseVofVsinV(dy/dx)
10. FirstVorder;Vlinear
11. WritingVtheVdifferentialVequationVinVtheVformVx(dy/dx)V+Vy2V =V 1,VweVseeVthatVitVisVno
nlinearVinVyVbecauseVofVy2.VHowever,VwritingVitVinVtheVformV(y2V−V1)(dx/dy)V+VxV =V 0,V
weVseeVthatVitVisVlinearVinVx.
12. WritingVtheVdifferentialVequationVinVtheVformVu(dv/du)V+V(1V+Vu)vV =V ueuVweVseeVt
hatVitVisVlinearVinVv.VHowever,VwritingVitVinVtheVformV(vV+VuvV−Vueu)(du/dv)V+VuV=V
0,VweVseeVthatVitVisVnonlinearVinVu.
13. FromVyV=Ve−x/2V weVobtainVy′V2=V−V1e−x/2.VThenV2y′V +VyV =V−e−x/2V +Ve−x/2V =V0.




1

,SolutionVandVAnswerVGuide:V Zill,VDIFFERENTIALVEQUATIONSVWithVMODELINGVAPPLICATIONSV2024,V9780357760192;VChapt
erV#1:
IntroductionVtoVDifferentialVEquations
6V 6
14. FromVyV =V −V —e20t weV obtainV dy/dtV =V 24e
−20t ,VsoVthat
5 5
dyV
+V20yV=V24e−20tV + 6V 6V − =V 24.
−V
V20 20t
e
dt 5 5V

15. FromVyV=Ve3xVcosV2xVweVobtainVy′V =V3e3xVcosV2x−2e3xVsinV2xVandVy′′V =V5e3xVcosV2x−12
e3xVsinV2x,VsoVthatVy′′V−V6y′V+V13yV=V0.

16. FromVyV =V −VcosVxVln(secVxV+VtanVx)V weVobtainVy =V−1V+VsinVxVln(secVxV+V tanVx)V and
′′ ′′
yV =VtanVxV+VcosVxVln(secVxV+VtanVx).VThenVyV +VyV=VtanVx.
17. TheVdomainV ofV theVfunction,VfoundVbyVsolvingVx+2V ≥V 0,VisV[−2,V∞).V FromV y′V =V 1+2(x+2)−1/2
weVhave
′ −
(yV − x)yV =V(yV−Vx)[1V+V(2(xV+V2)
1/2
]

=VyV−VxV+V2(yV−V V x)(xV+V2)−1/2

=VyV−VxV+V2[xV+V4(xV+V2)1/2V−V V x](xV+V2)−1/2

=VyV−VxV+V8(xV+V2)1/2V (xV+V2)−1/2V =VyV−VxV+V8.

AnVintervalVofVdefinitionVforVtheVsolutionVofVtheVdifferentialVequationVisV(−2,V∞)Vbecaus
eVy′V isVnotVdefinedVatVxV=V−2.

18. SinceVtanVxV isVnotVdefinedVforVxV =V π/2V +V nπ,VnV anVinteger,VtheVdomainVofVyV =V 5VtanV5xV is
{xV 5xV/=Vπ/2V+Vnπ}
orV{xV xV/=Vπ/10V+Vnπ/5}.VFromVyV′=V25VsecV25xVweVhave

2 2 2
yV =V25(1V+VtanV 5x)V=V25V+V25VtanV 5xV=V25V+VyV .

AnVintervalVofVdefinitionVforVtheVsolutionVofVtheVdifferentialVequationVisV(−π/10,Vπ/10).VA
n-VotherVintervalVisV(π/10,V3π/10),VandVsoVon.
19. TheVdomainVofVtheVfunctionVisV{xV4V /=V 0}VorV{x xV/=V −2VorVxV/=V 2}.VFromVyV′=
−VxV 2
2x/(4V −Vx2)2V weV have VV 1 V2
=V 2xy2.
4V−Vx2
y′V =V2x
AnVintervalVofVdefinitionVforVtheVsolutionVofVtheVdifferentialVequationVisV(−2,V2).VOther
Vinter-VvalsVareV(−∞,V−2)VandV(2,V∞).

20. TheVfunctionVisVyV =V 1 −VsinVxV,VwhoseVdomainV′ isVobtained
1
VfromV1V−VsinVxV /=V 0VorVsinVxV /=V 1.
−3/2
1/
Thus,VtheVdomainVisV{xV xV/=V π/2V+V2nπ}.VFromVyV =V−V (21V−VsinVx) (−VcosVx)VweVhave
2y′V =V(1V−VsinVx)−3/2V cosVxV=V[(1V−VsinVx)−1/2]3VcosVxV=V y3VcosVx.

AnVintervalVofVdefinitionVforVtheVsolutionVofVtheVdifferentialVequationVisV(π/2,V5π/2).VAno
2

, SolutionVandVAnswerVGuide:V Zill,VDIFFERENTIALVEQUATIONSVWithVMODELINGVAPPLICATIONSV2024,V9780357760192;VChapt
erV#1: therVoneVisV(5π/2,V9π/2),VandVsoVon.
IntroductionVtoVDifferentialVEquations




3
$19.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
kelvinmuthii

Get to know the seller

Seller avatar
kelvinmuthii Teachme2-tutor
Follow You need to be logged in order to follow users or courses
Sold
New on Stuvia
Member since
1 week
Number of followers
0
Documents
95
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions