100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4,6 TrustPilot
logo-home
Summary

Samenvatting - Method, Measurement and Statistics (424023-B-6) with the focus on statistics

Rating
-
Sold
-
Pages
47
Uploaded on
16-12-2025
Written in
2025/2026

This document contains my lecture notes and a summary organised in a logical order with the focus on statistics (half of the course). I structured the content by topic and key concepts to make it easy to revise efficiently. Using this document to study, I achieved a grade of 9.5 on the exam.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 16, 2025
Number of pages
47
Written in
2025/2026
Type
Summary

Subjects

Content preview

Week 1 – Lecture 1

Statistics

- Describe/summarize data
- Drawing inferences (= a conclusion/educated guess reached by using evidence)
about population
- Studying complex multivariate relationships ( statistic modelling)

Data inspection = getting to know your data
 get a clear picture of the data by examining one variable at the time ( univariate)
or pairs of variables ( bivariate)

- Central tendency  what are the most typical values of a variable?
(where does the centre of the data lie)
- Variability  how large are the differences between the subjects on the variable?
(how much do the scores differ from each other)
- Bivariate association  for each pair of variables, do they associate/covary/correlate
(= do low/large values on variable A go together with low/large values on variable B)
 the relationship

 To accomplish this, we use

1. Visual data inspection (graphs)
- Bar charts  nominal and ordinal data
o counts/percentages
o beware of misleading scales (Y-axis does not always start at
zero)
o each bar represents a separate category
o company  nominal (not order)  each company is one
category
o comparing frequencies or percentages across categories

- Histograms  used for scale data
o Histograms are a way to visualize the distribution of continuous data (like
height, age). They make it easy to see the central tendency (where most
values fall), the variability (spread), and the shape of the distribution.

The black line = The normal distribution  Gaussian curve
 mathematical distribution  The normal distribution is a theoretical model that describes
how data are often distributed in nature

- The mean  centre of the curve
- The standard deviation  measures hoe spread out the values are
around the mean  how wide or narrow the curve is

 Symmetrical distribution: The curve is bell-shaped and perfectly symmetrical
around the mean.

- Scatterplots  used for scale data  2+ variables
o Spot clusters, trends and outliers

, o You can see if the different variables are positively corelated, negatively
correlated or not related.
o Spot the relationship




2. Numerical data inspection  Statistic approaches
a) Frequency table  1 variable
o Percent = frequency / total sample size (N)
o Valid percent = frequency / (Total sample size
(N) – missings)
o (Variable = the opinion on nuclear energy
use)

Cross table  2 variables

o (Is people’s voting behaviour (X) related to
their views on nuclear energy (Y)?)

b) Numerical data inspection  central tendencies

Mode  the score that is observed most frequently

o Example  (3, 4, 4, 5, 5, 5)  mode = 5
o Nominal, ordinal or scale data

Median  the score that separates the higher half of data from the lower half

o Example 1  (N= unequal): (5, 6, 7, 8, 9)  median is 7
o 50% of the students give a grade of 7 or more
o Example 2  (N = equal): (5, 6, 8, 9)  median is 7 = (6+8)/2
o Ordinal or scale data that are not normally distributed

Mean (M) = average = (sum of alle scores/total number of scores)

o Example  (2, 3, 10)  mean is 5 (15/3)
o No mode
o Median is 3
o Gets pulled by outliers




c) Numerical data inspection  Normal and skewed distributions  which measure
should we use?

,Normal distribution = mean, median and mode all at the centre

Skewed distribution?  use the median!  mean can be misleading here (ordinal data)

o Positively skewed (right)  the mean is larger than the median (X-AXIS!!!)
Example  income (a few people earn extremely high salaries).
The outliers are higher than the average
o Negatively skewed  the mean is smaller than the median (X-AXIS!!!)
Example  age at death in countries with very high life expectancy (most
people live long, but some die very young).
The outliners are lower than the average




Variability

Deviation score = the difference between each score (Xi) and (M)ean score

 Total and average of deviation scores is always 0
 If you add up all deviation scores  it will always be 0

Problem  Useless if you want to measure the difference in variability between datasets for
example

Solution  square each deviation score to make them positive

 sum these scores to get the Sum of Squares (a
measure of total variability)
 But, a bigger dataset naturally gives us a bigger SS, even if the
data are equally spread out

Average variability  Variance

 smaller values indicate less variation: people score closer to the mean.
 Not yet a measure of average variation, because scores have been squared
 Standard Deviation (SD)  brings back the original units of the data  makes it
easier to interpret



Deviation score alone cannot tell us if an individual is extreme  we need to express it
relative to the variability of all scores

Week 2 - Lecture 2

, 1. Variability

 quantify how much scores differ from each other (their spread)

- Spread can differ, even if two sets of measures have the same average

Quantifying Variability

Step 1: calculate the deviation score between individual i’s score X1 and the M(ean)  the
average

 Di = Xi – M

- Xi = the individual value
- Di = what it differs from the mean

Calculate everyone’s amount from the mean (x-m) = Di

Total and average deviation scores is always 0  if you add up all the deviations, the result
is always zero

- Square (^2) deviation score  become positive
- Sum of squares (SS), a measure of total variability

Step 2: average variability

Variance

- measures how spread- out scores are around the mean
- (N-1)  you do not need to know why (degrees of freedom)
- N is the number of observations in a single sample

Standard deviation (SD)  the square root of the variance 

- It ‘’undoes the squaring’’, putting variability back in the original units (points, cm,
euros).
- Expresses average variation from the mean
- Small values indicate less variation: people score closer to the mean



Problem: Standard deviation alone cannot tell us if an individual is extreme
 we need to express it relative to the variability of all scores  Standardization


Deviation score is the distance between a score and the mean score = Xi – M

Deviation scores depend on the unit of the scale:

Example: IQ test scores have a wider range (50 – 150) than exam grades (0-10)
A deviation score of 15 is common in IQ tests but impossible with exam grades

Z- scores

= the deviation score, but standardized (all scores end up on the same unit) by the
variability in all scores
$9.26
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
saraverhulst37

Get to know the seller

Seller avatar
saraverhulst37 Tilburg University
Follow You need to be logged in order to follow users or courses
Sold
New on Stuvia
Member since
1 month
Number of followers
0
Documents
3
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions