100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

1CV40 - Formula sheet

Rating
5.0
(1)
Sold
6
Pages
4
Uploaded on
18-02-2021
Written in
2019/2020

Formula sheet for use during exam

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Uploaded on
February 18, 2021
Number of pages
4
Written in
2019/2020
Type
Other
Person
Unknown

Subjects

Content preview

1CV40 - Formulenblad

Chapter 2 – The Failure Distribution Chapter 4 – Time-Dependent Failure Models
𝑅𝑅(𝑡𝑡) = ℙ{𝑇𝑇 ≥ 𝑡𝑡} Weibull Distribution: The Gamma Distribution:

𝛽𝛽 = shape parameter, and 𝜃𝜃 = scale parameter (𝜃𝜃 = characteristic 𝛾𝛾 is the shape parameter, 𝛼𝛼 is the scale parameter
𝑅𝑅(𝑡𝑡) = � 𝑓𝑓(𝑡𝑡 ′ )𝑑𝑑𝑑𝑑′ = 1 − 𝐹𝐹(𝑡𝑡) 𝑡𝑡
𝑡𝑡 life). 𝑡𝑡 𝛾𝛾−1 ∗ 𝑒𝑒 −𝛼𝛼
Properties: β 𝑡𝑡 𝛽𝛽−1 𝑓𝑓(𝑡𝑡) = , 𝛾𝛾, 𝛼𝛼 > 0, 𝑡𝑡 ≥ 0
λ(t) = ∗ � � , 𝜃𝜃 > 0, 𝛽𝛽 > 0, 𝑡𝑡 ≥ 0 𝛼𝛼 𝛾𝛾 ∗ Γ(𝑦𝑦)
I) t ≥ 0, II) R(0) = 1, III) lim [𝑅𝑅(𝑡𝑡)] = 0, θ 𝜃𝜃 𝑡𝑡
𝑡𝑡→∞
𝑅𝑅(𝑡𝑡) = 𝑒𝑒 −(𝑡𝑡/𝜃𝜃)
𝛽𝛽 𝐼𝐼 � , 𝛾𝛾�
IV) 0 ≤ 𝑅𝑅(𝑡𝑡) ≤ 1, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞) 𝑅𝑅(𝑡𝑡) = 1 − 𝛼𝛼
𝛿𝛿𝛿𝛿(𝑡𝑡) β 𝑡𝑡 𝛽𝛽−1 Γ(𝛾𝛾)
V) R(t) is a monotonously decreasing function of t, i.e. ≤ 𝑓𝑓(𝑡𝑡) = ∗ � � ∗ 𝑒𝑒 −(𝑡𝑡/𝜃𝜃)
𝛽𝛽
𝛿𝛿𝛿𝛿
θ 𝜃𝜃 𝛼𝛼(𝛾𝛾 − 1), 𝛾𝛾 > 1
0, ∀∆𝑡𝑡, ∆𝑡𝑡 > 0 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �
1 0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜃𝜃 ∗ Γ �1 + �
𝛽𝛽 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝛾𝛾 ∗ 𝛼𝛼 𝜎𝜎 = �𝛾𝛾𝛼𝛼 2
𝐹𝐹(𝑡𝑡) = ℙ{𝑇𝑇 < 𝑡𝑡} 2 1 2 𝑡𝑡 𝑡𝑡/𝛼𝛼
𝑡𝑡 ′
𝑡𝑡 𝜎𝜎 2 = 𝜃𝜃 2 ∗ �Γ �1 + � − �Γ �1 + �� � 𝐼𝐼 � , 𝛾𝛾� = � 𝑦𝑦 𝛾𝛾−1 ∗ 𝑒𝑒 −𝑦𝑦 𝑑𝑑𝑑𝑑, 𝑦𝑦 =
𝐹𝐹(𝑡𝑡) = � 𝑓𝑓(𝑡𝑡 ′ )𝑑𝑑𝑡𝑡 ′ = 1 − 𝑅𝑅(𝑡𝑡) 𝛽𝛽 𝛽𝛽 𝛼𝛼 0 𝛼𝛼
𝑥𝑥
0 0 < 𝛾𝛾 < 1  DFR, 𝛾𝛾 = 1  CFR
Properties: Γ(𝑥𝑥) = � 𝑦𝑦 𝑥𝑥−1 𝑒𝑒 −𝑦𝑦 𝑑𝑑𝑑𝑑 𝛾𝛾 > 1  IFR
0
I) t ≥ 0, II) F(0) = 0, III) lim [𝐹𝐹(𝑡𝑡)] = 1 Γ(𝑥𝑥) = (𝑥𝑥 − 1) ∗ Γ(𝑥𝑥 − 1)
𝑡𝑡→∞
Chapter 5 – Reliability of Systems
IV) 0 ≤ 𝐹𝐹(𝑡𝑡) ≤ 1, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞) �ln�𝑅𝑅(𝑡𝑡1 )� − ln�𝑅𝑅(𝑡𝑡2 )�� 𝛽𝛽
1 𝑡𝑡 − 𝑡𝑡1
𝛽𝛽
𝛿𝛿𝛿𝛿(𝑡𝑡) 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡1 , 𝑡𝑡2 ) = = 𝛽𝛽 ∗ 2 Serial configuration:
V) F(t) is a monotonously increasing function of t, i.e. ≥ 𝑡𝑡2 − 𝑡𝑡1 𝜃𝜃 𝑡𝑡2 − 𝑡𝑡1
𝛿𝛿𝛿𝛿 𝑛𝑛
0, ∀∆𝑡𝑡, ∆𝑡𝑡 > 0
Design Life, Median, and Mode: 𝑅𝑅𝑆𝑆 (𝑡𝑡) = � 𝑅𝑅𝑖𝑖 (𝑡𝑡)
1 𝑖𝑖=1
𝛿𝛿𝛿𝛿(𝑡𝑡) 𝛿𝛿𝛿𝛿(𝑡𝑡) 𝑡𝑡𝑅𝑅 = 𝜃𝜃 ∗ (− ln(𝑅𝑅))𝛽𝛽 Multi-component CFR:
𝑓𝑓(𝑡𝑡) = − = 1
𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿 𝑅𝑅𝑆𝑆 (𝑡𝑡) = exp (−𝜆𝜆𝑠𝑠 ∗ 𝑡𝑡)
Properties: 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜃𝜃 ∗ (− ln(0.5))𝛽𝛽 𝑛𝑛
∞ 1
I) 𝑓𝑓(𝑡𝑡) ≥ 0, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞), II) ∫0 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 = 1, III) 𝑡𝑡 ≥ 0 1 𝛽𝛽 𝜆𝜆𝑆𝑆 = � 𝜆𝜆𝑖𝑖
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �𝜃𝜃 �1 − 𝛽𝛽 � , 𝑓𝑓𝑓𝑓𝑓𝑓 𝛽𝛽 > 1 𝑖𝑖=1
1
𝑡𝑡 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝛽𝛽 ≤ 1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑅𝑅(𝑡𝑡) = exp �− � 𝜆𝜆(𝑡𝑡 ′ )𝑑𝑑𝑡𝑡 ′ � 𝜆𝜆𝑠𝑠
See Table 2. 𝛽𝛽1 -life R(t) = 0.99, 𝛽𝛽0.1 -life R(t) = 0.999
0 Parallel configuration:
Hazard rate / Failure rate: 𝑛𝑛
𝛿𝛿𝛿𝛿(𝑡𝑡) 1 𝑓𝑓(𝑡𝑡) Burn-In Screening for Weibull: 𝑅𝑅𝑆𝑆 (𝑡𝑡) = 1 − �[1 − 𝑅𝑅𝑖𝑖 (𝑡𝑡)]
𝜆𝜆(𝑡𝑡) = − ∗ =
𝛿𝛿𝛿𝛿 𝑅𝑅(𝑡𝑡) 𝑅𝑅(𝑡𝑡) 𝑅𝑅(𝑡𝑡 + 𝑇𝑇0 ) 𝑡𝑡 + 𝑇𝑇0 𝛽𝛽 𝑇𝑇0 𝛽𝛽 𝑖𝑖=1
Properties: 𝑅𝑅(𝑡𝑡|𝑇𝑇0 ) = = exp �− � � +� � � Two-component CFR:
𝑅𝑅(𝑇𝑇0 ) 𝜃𝜃 𝜃𝜃
I) 0 ≤ 𝜆𝜆(𝑡𝑡) ∗ Δ𝑡𝑡 ≤ 1, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞) II) 𝜆𝜆(𝑡𝑡) ≥ 0, ∀𝑡𝑡, 𝑡𝑡 ∈ [0, ∞) III) 1 𝑅𝑅𝑆𝑆 (𝑡𝑡) = 1 − (1 − 𝑒𝑒 −𝜆𝜆1 ∗𝑡𝑡 ) ∗ (1 − 𝑒𝑒 −𝜆𝜆2 ∗𝑡𝑡 )
Δ𝑡𝑡 > 0 𝑇𝑇0 𝛽𝛽 𝛽𝛽 = 𝑒𝑒 −𝜆𝜆1 ∗𝑡𝑡 + 𝑒𝑒 −𝜆𝜆2 ∗𝑡𝑡
𝑡𝑡𝑅𝑅 = 𝜃𝜃 �− ln(𝑅𝑅) + � � � − 𝑇𝑇0 − 𝑒𝑒 −(𝜆𝜆1 +𝜆𝜆2 )∗𝑡𝑡
𝜃𝜃
∞ ∞ ∞ 1 1 1
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = � 𝑅𝑅(𝑡𝑡)𝑑𝑑𝑑𝑑 = � [1 − 𝐹𝐹(𝑡𝑡)]𝑑𝑑𝑑𝑑 = � 𝑡𝑡 ∗ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = + −
𝜆𝜆1 𝜆𝜆2 𝜆𝜆1 + 𝜆𝜆2
0 0 0 Identical Weibull Components:

If a system consists of n serially related components
𝜎𝜎 2 = �� 𝑡𝑡 2 ∗ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑� − (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)2 k-out-of-n Redundancy: k or more successes
n∗β
0
∞ λ(t) = β ∗ (𝑡𝑡)𝛽𝛽−1 𝑛𝑛
θ ℙ(𝑥𝑥) = � � 𝑅𝑅 𝑥𝑥 (1 − 𝑅𝑅)𝑛𝑛−𝑥𝑥
𝜎𝜎 2 = � (𝑡𝑡 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)2 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑡𝑡 𝛽𝛽 𝑥𝑥
−𝑛𝑛∗� �
0 𝑅𝑅(𝑡𝑡) = 𝑒𝑒 which is a Weibull distribution with shape parameter
𝜃𝜃 𝑛𝑛 𝑛𝑛!
Residual MTTF: 𝜃𝜃 � �=
∞ 𝛽𝛽 and scale parameter 𝑛𝑛1/𝛽𝛽. 𝑥𝑥 𝑥𝑥! (𝑛𝑛 − 𝑥𝑥)!
1 𝑛𝑛
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇0 ) = ∗ � 𝑅𝑅(𝑡𝑡 ′ )𝑑𝑑𝑑𝑑′
𝑅𝑅(𝑇𝑇0 ) 𝑇𝑇0 𝑅𝑅𝑠𝑠 = � ℙ(𝑥𝑥)
The Three-Parameter Weibull: 𝑥𝑥=𝑘𝑘
Whenever there is a minimum life: t0 Exponential Failures:
Conditional reliability: 𝑛𝑛
𝑡𝑡−𝑡𝑡0 𝛽𝛽 𝑛𝑛
𝑅𝑅(𝑡𝑡 + 𝑇𝑇0 ) 𝑅𝑅(𝑡𝑡) = 𝑒𝑒 −� 𝜃𝜃 � , 𝑡𝑡
> 𝑡𝑡0 𝑅𝑅𝑠𝑠 (𝑡𝑡) = � � � 𝑒𝑒 −𝜆𝜆𝜆𝜆𝜆𝜆 [1 − 𝑒𝑒 −𝜆𝜆𝜆𝜆 ]𝑛𝑛−𝑥𝑥
𝑅𝑅(𝑡𝑡|𝑇𝑇0 ) = 𝑥𝑥
𝑅𝑅(𝑇𝑇0 ) β 𝑡𝑡 − 𝑡𝑡0 𝛽𝛽−1 𝑥𝑥=𝑘𝑘
λ(t) = ∗� � , 𝑡𝑡 > 𝑡𝑡0 𝑛𝑛
θ 𝜃𝜃 ∞
1 1
Median: 𝑅𝑅(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ) = 0.5 1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = � 𝑅𝑅𝑠𝑠 (𝑡𝑡) 𝑑𝑑𝑑𝑑 = �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑡𝑡0 + 𝜃𝜃 ∗ Γ �1 + � 0 𝜆𝜆 𝑥𝑥
Mode: 𝑓𝑓(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ) = max 𝑓𝑓(𝑡𝑡) 𝛽𝛽 𝑥𝑥=𝑘𝑘
0≤𝑡𝑡<∞ 1
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑡𝑡0 + 𝜃𝜃 ∗ (− ln(0.5))𝛽𝛽 Chapter 6 – State-Dependent Systems
1
Cumulative failure rate: 𝑡𝑡𝑅𝑅 = 𝑡𝑡0 + 𝜃𝜃 ∗ (− ln(𝑅𝑅))𝛽𝛽 Two component parallel (redundant) system:
𝑡𝑡
𝐿𝐿(𝑡𝑡) = � 𝜆𝜆(𝑡𝑡 ′ )𝑑𝑑𝑡𝑡 ′ 𝜎𝜎 2 is the same as for the 2-parameter Weibull 𝑅𝑅𝑝𝑝 (𝑡𝑡) = 𝑃𝑃1 (𝑡𝑡) + 𝑃𝑃2 (𝑡𝑡) + 𝑃𝑃3 (𝑡𝑡), ∀t, t ∈ [0, ∞)
0 𝑃𝑃1 (𝑡𝑡) + 𝑃𝑃2 (𝑡𝑡) + 𝑃𝑃3 (𝑡𝑡) + 𝑃𝑃4 (𝑡𝑡) = 1, ∀t, t ∈ [0, ∞)
Average failure rate:
𝑡𝑡 Redundancy with Weibull Failures:
�∫𝑡𝑡 2 𝜆𝜆(𝑡𝑡′)𝑑𝑑𝑑𝑑′� �ln�𝑅𝑅(𝑡𝑡1 )� − ln�𝑅𝑅(𝑡𝑡2 )�� 𝑡𝑡 𝛽𝛽 𝑡𝑡 𝛽𝛽 ∀t, t ∈ [0, ∞):
𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡1 , 𝑡𝑡2 ) = 1 = 𝑅𝑅𝑠𝑠 (𝑡𝑡) = 2𝑒𝑒 −�𝜃𝜃� − 𝑒𝑒 −2�𝜃𝜃� Name the states: 𝑃𝑃1 (𝑡𝑡): probability that at time t …
𝑡𝑡2 − 𝑡𝑡1 𝑡𝑡2 − 𝑡𝑡1 ∞ 𝑡𝑡 𝛽𝛽 ∞ 𝑡𝑡 𝛽𝛽 𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆2 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃1 (𝑡𝑡)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 2 ∗ � 𝑒𝑒 −�𝜃𝜃� 𝑑𝑑𝑑𝑑 −� 𝑒𝑒 −2�𝜃𝜃� 𝑑𝑑𝑑𝑑
Chapter 3 – Constant Failure Rate Model 0 0
𝑃𝑃2 (𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃2 (𝑡𝑡) + 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆2 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃2 (𝑡𝑡)
𝑡𝑡 𝛽𝛽 𝑃𝑃3 (𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃3 (𝑡𝑡) + 𝜆𝜆2 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃3 (𝑡𝑡)
𝑅𝑅(𝑡𝑡) = 𝑒𝑒 −𝜆𝜆𝜆𝜆 , 𝑡𝑡 ≥ 0 𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒 −𝜆𝜆𝜆𝜆 , 𝑡𝑡 ≥ 0 𝛽𝛽 𝑡𝑡 𝛽𝛽−1 2 − 2𝑒𝑒 −�𝜃𝜃� 𝑃𝑃4 (𝑡𝑡 + ∆𝑡𝑡) = 𝑃𝑃4 (𝑡𝑡) + 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃3 (𝑡𝑡) + 𝜆𝜆2 ∗ Δ𝑡𝑡 ∗ 𝑃𝑃2 (𝑡𝑡)
1 1 𝜆𝜆𝑆𝑆 (𝑡𝑡) = ∗� � ∗
𝑓𝑓(𝑡𝑡) = 𝜆𝜆 ∗ 𝑒𝑒 −𝜆𝜆𝜆𝜆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜎𝜎 2 = 2 𝜃𝜃 𝜃𝜃 𝑡𝑡 𝛽𝛽 Note that
𝜆𝜆 𝜆𝜆 2 − 𝑒𝑒 −�𝜃𝜃� 𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) = (1 − 𝜆𝜆1 ∗ Δ𝑡𝑡 ∗ −𝜆𝜆2 ∗ Δ𝑡𝑡) ∗ 𝑃𝑃1 (𝑡𝑡)
𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) − 𝑃𝑃1 (𝑡𝑡)
Memoryless: Normal Distribution: = −𝜆𝜆1 ∗ 𝑃𝑃1 (𝑡𝑡) − 𝜆𝜆2 ∗ 𝑃𝑃1 (𝑡𝑡)
Δ𝑡𝑡
𝑅𝑅(𝑡𝑡 + 𝑇𝑇0 ) 𝑒𝑒 −𝜆𝜆∗𝑇𝑇0 ∗ 𝑒𝑒 −𝜆𝜆∗𝑡𝑡 1 1 (𝑡𝑡 − 𝜇𝜇)2 𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) − 𝑃𝑃1 (𝑡𝑡)
𝑅𝑅(𝑡𝑡|𝑇𝑇0 ) = = = 𝑅𝑅(𝑡𝑡) 𝑓𝑓(𝑡𝑡) = exp �− ∗ �, −∞ < 𝑡𝑡 < ∞ = −(𝜆𝜆1 + 𝜆𝜆2 )𝑃𝑃1 (𝑡𝑡)
𝑅𝑅(𝑇𝑇0 ) 𝑒𝑒 −𝜆𝜆∗𝑇𝑇0 𝜎𝜎√2𝜋𝜋 2 𝜎𝜎 2 Δ𝑡𝑡
𝑡𝑡 − 𝜇𝜇 𝑃𝑃1 (𝑡𝑡 + ∆𝑡𝑡) − 𝑃𝑃1 (𝑡𝑡) 𝛿𝛿𝑃𝑃1 (𝑡𝑡)
R(t) = 1 − Φ � � lim � �= = −(𝜆𝜆1 + 𝜆𝜆2 )𝑃𝑃1 (𝑡𝑡),
𝜎𝜎 Δ𝑡𝑡→0 Δ𝑡𝑡 𝛿𝛿𝛿𝛿
The Two-Parameter Exponential Distribution: 𝑇𝑇 − 𝜇𝜇 𝑡𝑡 − 𝜇𝜇 𝑡𝑡 − 𝜇𝜇 𝑡𝑡 − 𝜇𝜇
𝐹𝐹(𝑡𝑡) = ℙ{𝑇𝑇 < 𝑡𝑡} = ℙ � < � = ℙ �𝑧𝑧 < � = Φ� � ∀t, t ∈ [0, ∞)
Guaranteed lifetime: 𝑡𝑡0 𝜎𝜎 𝜎𝜎 𝜎𝜎 𝜎𝜎
𝛿𝛿𝛿𝛿(𝑡𝑡) 𝐼𝐼 = {1, 2, 3, 4}
𝑓𝑓(𝑡𝑡) 𝑓𝑓(𝑡𝑡) 𝑇𝑇 − 𝜇𝜇 0 ≤ 𝑃𝑃1 (𝑡𝑡) ≤ 1,
𝑓𝑓(𝑡𝑡) = − = λe−λ(t−t0 ) , 0 < 𝑡𝑡0 ≤ 𝑡𝑡 < ∞ 𝜆𝜆(𝑡𝑡) = = , 𝑧𝑧 = ∀t, t ∈ [0, ∞)
𝛿𝛿𝛿𝛿 𝑅𝑅(𝑡𝑡) 1 − Φ �𝑡𝑡 − 𝜇𝜇 � 𝜎𝜎 0 ≤ 𝑃𝑃2 (𝑡𝑡) ≤ 1, ∀t, t ∈ [0, ∞)
𝑅𝑅(𝑡𝑡) = 𝑒𝑒 −λ(t−t0 ) , 𝑡𝑡 ≥ 𝑡𝑡0 σ = 1/λ 𝜎𝜎
0 ≤ 𝑃𝑃3 (𝑡𝑡) ≤ 1, ∀t, t ∈ [0, ∞)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑡𝑡0 + 1/𝜆𝜆 The mode occurs at t0
0 ≤ 𝑃𝑃4 (𝑡𝑡) ≤ 1, ∀t, t ∈ [0, ∞)
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑡𝑡0 + ln [0.5]/−𝜆𝜆 𝑡𝑡𝑅𝑅 = 𝑡𝑡0 + ln [𝑅𝑅]/−𝜆𝜆 Lognormal distribution: See Table 3. 𝑃𝑃1 (𝑡𝑡) + 𝑃𝑃2 (𝑡𝑡) + 𝑃𝑃3 (𝑡𝑡) + 𝑃𝑃4 (𝑡𝑡) = 1, ∀t, t ∈ [0, ∞)
s = shape parameter and tmed = location parameter. 𝑃𝑃1 (0) = ⋯ , 𝑃𝑃2 (0) = ⋯ , 𝑃𝑃3 (0) = ⋯ , 𝑃𝑃4 (0) = ⋯ , 𝑅𝑅(𝑡𝑡) = ⋯
The Poisson Process: 1 1 𝑡𝑡 2 Two component serial system:
𝑓𝑓(𝑡𝑡) = ∗ exp �− 2 ∗ ln � � � , 𝑡𝑡 ≥ 0
If a component having a constant failure rate λ is immediately 𝑠𝑠 ∗ 𝑡𝑡 ∗ √2𝜋𝜋 2𝑠𝑠 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑠𝑠 (𝑡𝑡) = 𝑃𝑃1 (𝑡𝑡), ∀t, t ∈ [0, ∞)
repaired or replaced upon failing, the number of failures observed 𝑠𝑠 2 𝑇𝑇 − 𝜇𝜇
over a time period t has a Poisson distribution. The probability of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ∗ exp � � , 𝑧𝑧 = Decomposition:
2 𝜎𝜎 𝑅𝑅𝑠𝑠 = 𝑅𝑅𝐸𝐸 𝑅𝑅(𝑏𝑏) + (1 − 𝑅𝑅𝐸𝐸 )𝑅𝑅(𝑐𝑐)
observing n failures in time t is given by the Poisson probability mass 2
𝜎𝜎 2 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ∗ exp[𝑠𝑠 2 ] ∗ [exp(𝑠𝑠 2 ) − 1]
function pn(t): 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
(λt)n 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = , 𝑡𝑡𝑅𝑅 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑒𝑒 𝑠𝑠∗𝑧𝑧(1−𝑅𝑅)
𝑝𝑝𝑛𝑛 (𝑡𝑡) = 𝑒𝑒 −λt ∗ , 𝑛𝑛 = 0,1,2,3,4, … exp(𝑠𝑠 2 )
𝑛𝑛! 1 𝑡𝑡 1 𝑡𝑡
With mean over time t is given by λt, and the variance of the 𝐹𝐹(𝑡𝑡) = Φ � ∗ ln � �� , 𝑅𝑅(𝑡𝑡) = 1 − Φ � ∗ ln � ��
𝑠𝑠 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
distribution is also λt. See Table 1
No failures: (exponential)
𝑆𝑆
𝑒𝑒 −𝜆𝜆𝜆𝜆 ∗ (𝜆𝜆𝜆𝜆)0
𝑝𝑝0 = = e−𝜆𝜆𝜆𝜆 = 𝑅𝑅(𝑡𝑡), 𝑅𝑅𝑆𝑆 (𝑡𝑡) = � 𝑝𝑝𝑛𝑛 (𝑡𝑡) Common-Mode Failures;
0!
𝑛𝑛=0


Redundancy and the CFR Model
R(t) = 1 − (1 − 𝑒𝑒 λt )2 = 2𝑒𝑒 −λt − 𝑒𝑒 −2λt
𝑓𝑓(𝑡𝑡) 𝜆𝜆(1 − 𝑒𝑒 −𝜆𝜆𝜆𝜆 )
𝜆𝜆(𝑡𝑡) = =
𝑅𝑅(𝑡𝑡) 1 − 0.5 ∗ 𝑒𝑒 −𝜆𝜆𝜆𝜆
As 𝑡𝑡 → ∞, 𝜆𝜆(𝑡𝑡) → 𝜆𝜆. Which is CFR.
1.5
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
λ




1

Reviews from verified buyers

Showing all reviews
4 year ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
remcodewit Technische Universiteit Eindhoven
Follow You need to be logged in order to follow users or courses
Sold
10
Member since
4 year
Number of followers
9
Documents
2
Last sold
10 months ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions