100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Case

Ejercicios resueltos del método de Laplace

Rating
-
Sold
-
Pages
6
Grade
A+
Uploaded on
16-02-2021
Written in
2020/2021

Ejercicios resueltos del método de Laplace

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
February 16, 2021
Number of pages
6
Written in
2020/2021
Type
Case
Professor(s)
Espiritu
Grade
A+

Subjects

Content preview

Solución de ecuaciones diferenciales mediante la Transformada de Laplace.

Introducción. La transformada de Laplace se define como ℒ{𝑓(𝑡)} = ∫0 𝑓(𝑡)𝑒 −𝑠𝑡 𝑑𝑡

También se puede representar como ℒ{𝑓(𝑡)} = 𝐹(𝑠) , ℒ{𝑔(𝑡)} = 𝐺(𝑠), o bien ℒ{𝑦(𝑡)} = 𝑌(𝑠).

Mediante unos ejemplos de transformadas de Laplace, mostraré el procedimiento para construir una tabla de
transformadas, la cual será utilizada para resolver ecuaciones diferenciales.

Ejemplo. Encuentre la Transformada de Laplace para la función 𝑓(𝑡) = 1.

∞ 1 ∞ 1 1 1 1 1 1
Solución. ℒ{𝑓(𝑡)} = ∫0 (1)𝑒 −𝑠𝑡 𝑑𝑡 = − 𝑠 ∫0 −𝑠𝑒 −𝑠𝑡 𝑑𝑡 = − 𝑠 [𝑒 −𝑠𝑡 ]∞
0 = − 𝑠 [𝑒 ∞ − 𝑒 0 ] = − 𝑠 [−1] = 𝑠


Ejemplo. Encuentre la transformada de Laplace para la función 𝑓(𝑡) = 𝑡.

∞ −1 −𝑠𝑡
Solución. ℒ{𝑓(𝑡)} = ∫0 (𝑡)𝑒 −𝑠𝑡 𝑑𝑡 ; resolviendo por partes 𝑢 = 𝑡, 𝑑𝑢 = 𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑠
𝑒

𝑡 −1 −𝑠𝑡 ∞ 𝑡 1 ∞
ℒ{𝑓(𝑡)} = [− 𝑒 −𝑠𝑡 − ∫ 𝑒 𝑑𝑡] ; ℒ{𝑓(𝑡)} = [− 𝑒 −𝑠𝑡 − 2 ∫ −𝑠 𝑒 −𝑠𝑡 𝑑𝑡]
𝑠 𝑠 0 𝑠 𝑠 0

𝑡 ∞ 1 𝑡 ∞ 1 1 ∞
ℒ{𝑓(𝑡)} = − [ ] − [∫ −𝑠 𝑒 −𝑠𝑡 𝑑𝑡]∞
0 ; ℒ{𝑓(𝑡)} = − [ ] − [ ]
𝑠𝑒 𝑠𝑡 0 𝑠2 𝑠𝑒 𝑠𝑡 0 𝑠2 𝑒 𝑠𝑡 0

𝑡 1 𝑡 1 1
lim 𝑠𝑒 𝑠𝑡 = lim 𝑠2 𝑒 𝑠𝑡 = 0 ; lim 𝑠𝑒 𝑠𝑡 = 0 ; ℒ{𝑓(𝑡)} = 0 − 𝑠2 [0 − 1] = 𝑠2
𝑡→∞ 𝑡→∞ 𝑡→0

Ejemplo. Encuentre la Transformada de Laplace para la siguiente función. 𝑓(𝑡) = 𝑒 𝑎𝑡
∞ ∞ ∞
Solución. ℒ{𝑒 𝑡 } = ∫0 (𝑒 𝑎𝑡 )𝑒 −𝑠𝑡 𝑑𝑡 ; ℒ{𝑒 𝑡 } = ∫0 (𝑒 𝑎𝑡−𝑠𝑡 )𝑑𝑡; ℒ{𝑒 𝑡 } = ∫0 𝑒 −(𝑠−𝑎)𝑡 𝑑𝑡

∞ ∞
∞ 1 𝑒 −(𝑠−𝑎)𝑡
ℒ{𝑒 𝑡 } = [∫ 𝑒 −(𝑠−𝑎)𝑡 𝑑𝑡]0 ; ℒ{𝑒 𝑡 } = [−(𝑠−𝑎) ∫ −(𝑠 − 𝑎)𝑒 −(𝑠−𝑎)𝑡 𝑑𝑡] ; ℒ{𝑒 𝑡 } = [ −(𝑠−𝑎) ]
0 0

−1 1 ∞ −1 1 1 −1 1
ℒ{𝑒 𝑡 } = (𝑠−𝑎) [𝑒 (𝑠−𝑎)𝑡 ] ; ℒ{𝑒 𝑡 } = (𝑠−𝑎) [𝑒 (𝑠−𝑎)∞ − 𝑒 (𝑠−𝑎)(0)]; ℒ{𝑒 𝑡 } = (𝑠−𝑎) [0 − 1] ; ℒ{𝑒 𝑡 } = (𝑠−𝑎)
0

Ejemplo. Encuentre la Transformada de Laplace para la siguiente función. 𝑓(𝑡) = 𝑠𝑒𝑛(𝑎𝑡)

Solución. ℒ{𝑠𝑒𝑛(𝑎𝑡)} = ∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 ;

−1 −𝑠𝑡
resolviendo por partes 𝑢 = 𝑠𝑒𝑛(𝑎𝑡), 𝑑𝑢 = acos (𝑎𝑡)𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑒
𝑠

∞ −1 −1 −𝑠𝑡 ∞
∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡) − ∫ 𝑎cos(𝑎𝑡) 𝑠
𝑒 𝑑𝑡]
0

∞ −1 𝑎 ∞
∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡) + 𝑠 ∫ cos(𝑎𝑡)𝑒 −𝑠𝑡 𝑑𝑡]
0

−1 −𝑠𝑡
resolviendo por partes 𝑢 = 𝑐𝑜𝑠(𝑎𝑡), 𝑑𝑢 = −𝑎sen (𝑎𝑡)𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑠
𝑒

∞ −1 𝑎 −1 −1 −𝑠𝑡 ∞
∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡) + 𝑠 ( 𝑠 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡 − ∫ 𝑠
𝑒 (−𝑎 sen(𝑎𝑡) 𝑑𝑡)]
0

, ∞ −1 ∞ 𝑎 ∞ 𝑎2 ∞
∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡)] − [𝑠2 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡] − 𝑠2 ∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡
0 0

𝑎2 ∞ ∞ −1 ∞ 𝑎 ∞
∫ sen(𝑎𝑡) 𝑒 −𝑠𝑡
𝑠2 0
+ ∫0 (𝑠𝑒𝑛(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡)] − [𝑠2 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡]
0 0

𝑎2 ∞ −1 ∞ 𝑎 ∞
[ 𝑠2 + 1] ∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡)] − [𝑠2 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡]
0 0

∞ 𝑠2 −1 ∞ 𝑎 ∞
∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑠 𝑒 −𝑠𝑡 𝑠𝑒𝑛(𝑎𝑡)] − [𝑠2 𝑒 −𝑠𝑡 cos (𝑎t)𝑑𝑡]
0 0

∞ −𝑠 𝑠𝑒𝑛(𝑎𝑡) ∞ 𝑎 𝑐𝑜𝑠(𝑎𝑡) ∞
∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑒 𝑠𝑡
] − 𝑠2 +𝑎2 [ 𝑒 𝑠𝑡
]
0 0

∞ −𝑠 𝑠𝑒𝑛(𝑎(∞)) 𝑠𝑒𝑛(0𝑎) ∞ 𝑎 𝑐𝑜𝑠(𝑎(∞) 𝑐𝑜𝑠(0) ∞
∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑒 𝑠∞ − 𝑒0
] − 𝑠2 +𝑎2 [ 𝑒 𝑠(∞)
− ]
𝑒 𝑠(0) 0
0

∞ −𝑠 𝑎 𝑎
∫0 sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [0 − 0] − 𝑠2 +𝑎2 [0 − 1] = 𝑠2 +𝑎2

Ejemplo. Encuentre la Transformada de Laplace para la siguiente función. 𝑓(𝑡) = 𝑐𝑜𝑠(𝑎𝑡)

Solución. ℒ{𝑐𝑜𝑠(𝑎𝑡)} = ∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 ;

−1 −𝑠𝑡
resolviendo por partes 𝑢 = 𝑐𝑜𝑠(𝑎𝑡), 𝑑𝑢 = −𝑎sen (𝑎𝑡)𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑠
𝑒

∞ −1 −1 −𝑠𝑡 ∞
∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑐𝑜𝑠(𝑎𝑡) − ∫ 𝑎sen(𝑎𝑡) 𝑠
𝑒 𝑑𝑡]
0

∞ −1 ∞ 𝑎
∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠 𝑒 −𝑠𝑡 𝑐𝑜𝑠(𝑎𝑡)] + 𝑠 [∫ sen(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡]∞
0
0

−1 −𝑠𝑡
resolviendo por partes 𝑢 = 𝑠𝑒𝑛(𝑎𝑡), 𝑑𝑢 = 𝑎cos (𝑎𝑡)𝑑𝑡; 𝑑𝑣 = 𝑒 −𝑠𝑡 𝑑𝑡 ; 𝑣 = 𝑠
𝑒

∞ −𝑐𝑜𝑠(𝑎𝑡) ∞ 𝑎 sen (𝑎t) ∞ 𝑎2 ∞
∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠𝑒 𝑠𝑡
] − 𝑠2 [ 𝑒 𝑠𝑡
] − 𝑠2 ∫0 cos (𝑎t)𝑒 −𝑠𝑡 𝑑𝑡
0 0

𝑎2 ∞ ∞ −𝑐𝑜𝑠(𝑎𝑡) ∞ 𝑎 sen (𝑎t) ∞
∫ cos (𝑎t)𝑒 −𝑠𝑡 𝑑𝑡 + ∫0 (𝑐𝑜𝑠(𝑎𝑡))𝑒 −𝑠𝑡 𝑑𝑡 = [ ] − [ 𝑒 𝑠𝑡 ]
𝑠2 0 𝑠𝑒 𝑠𝑡 0 𝑠2 0

𝑎2 ∞ −𝑐𝑜𝑠(𝑎𝑡) ∞ 𝑎 sen (𝑎t) ∞
[ 𝑠2 + 1] ∫0 cos (𝑎t)𝑒 −𝑠𝑡 𝑑𝑡 = [ 𝑠𝑒 𝑠𝑡
] − 𝑠2 [ 𝑒 𝑠𝑡
]
0 0

∞ 𝑠 −𝑐𝑜𝑠(𝑎𝑡) ∞ 𝑎 sen (𝑎t) ∞
∫0 cos (𝑎t)𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑒 𝑠𝑡
] −
𝑠2 +𝑎2
[ 𝑒 𝑠𝑡
]
0 0

∞ −𝑠 𝑐𝑜𝑠(𝑎(∞)) 𝑐𝑜𝑠(0) ∞ 𝑎 𝑠𝑒𝑛(𝑎(∞) 𝑠𝑒𝑛(0) ∞
∫0 cos(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [ 𝑒 𝑠∞ − 𝑒0 0
] − 𝑠2 +𝑎2 [ 𝑒 𝑠(∞) − ]
𝑒 𝑠(0) 0

∞ −𝑠 𝑎 𝑠
∫0 cos(𝑎𝑡) 𝑒 −𝑠𝑡 𝑑𝑡 = 𝑠2 +𝑎2 [0 − 1] − 𝑠2 +𝑎2 [0 − 0] = 𝑠2 +𝑎2

La transformada inversa de la place si ℒ{𝑓(𝑡)} = 𝐹(𝑠) , entonces 𝑓(𝑡) = ℒ −1 {𝐹(𝑠)}

1 1 1
Así ℒ −1 {𝑠 } = 1 , ℒ −1 {𝑠2 } = 𝑡 , ℒ −1 {𝑠−𝑎} = 𝑒 𝑎𝑡 , etc
$9.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jocelynmarcial30

Also available in package deal

Get to know the seller

Seller avatar
jocelynmarcial30 instituto politécnico nacional
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
36
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions