Conceptos Fundamentales
Una ecuación diferencial es una ecuación la cual contiene derivadas, su expresión general es:
𝐹(𝑥, 𝑦, 𝑦 ′ , 𝑦 ′′ , … , 𝑦 (𝑛) ) = 0,
𝑑𝑦 𝑑2 𝑦 𝑑𝑛𝑦
donde 𝑦 ′ = , 𝑦 ′′ = , … , 𝑦 (𝑛) =
𝑑𝑥 𝑑𝑥 2 𝑑𝑥 𝑛
Si la ecuación diferencial contiene una sola variable independiente, entonces se le llama ecuación
diferencial ordinaria y el orden de la ecuación diferencial es igual al número de veces que ha sido
derivada la función, por ejemplo:
𝑑𝑦
𝑑𝑥
− 𝑥2𝑦 = 0 primer orden
𝑦 ′′ + 5𝑦 ′ + 𝑥 2 = sen(𝑥) segundo orden
𝑦 ′′′ + 3𝑦 ′′ + 𝑦 ′′ + 3𝑦 = 0 tercer orden
…, etc.
Así entonces, la solución de una ecuación diferencial de primer orden es una función, de segundo
orden son dos funciones, de tercer orden son tres funciones, etc.
Otra clasificación importante de las ecuaciones diferenciales es la Linealidad. Esta se considera
lineal si cumple con las siguientes condiciones:
a) La ecuación diferencial es de la forma
𝑑𝑛 𝑦 𝑑 𝑛−1 𝑦 𝑑2 𝑦 𝑑𝑦
𝑎𝑛 (𝑥) + 𝑎𝑛−1 (𝑥) + ⋯ + 𝑎2 (𝑥) + 𝑎1 (𝑥) + 𝑎0 (𝑥)𝑦 = 𝑓(𝑥)
𝑑𝑥 𝑛 𝑑𝑥 𝑛−1 𝑑𝑥 2 𝑑𝑥
b) La variable dependiente y todas sus derivadas deben ser de primer grado.
c) Si los coeficientes son variables. estos deberán depender de 𝑥, la cual es la variable independiente.
Ejemplos: Dadas las siguientes ecuaciones diferenciales determine si son o no lineales y explique porque.
𝑑𝑦
a) + tan(𝑦) = 𝑥 la tan(𝑦) no es lineal
𝑑𝑥
𝑑𝑦 2
b) 3 + 5𝑦 = 𝑠𝑒𝑛(𝑥) Lineal
𝑑𝑥 2
′′ ′
c) (1 − 𝑥𝑦)𝑦 + +5𝑥𝑦 + 5𝑦 = 0 el coeficiente contiene a la función
d) 5𝑥 2 𝑦 ′′ + 4𝑥𝑦 ′ + 3𝑦 = 𝑦 2 la función derecha no es lineal
e) 𝑥 3 𝑦 ′′′ + 2𝑥 2 𝑦′′ + 2𝑥𝑦 ′ + 4𝑦 = 0 Lineal
La solución de una ecuación diferencial.
𝑑𝑦
Si tenemos una ecuación diferencial de la forma = 𝑓(𝑥, 𝑦) le llamaremos la solución general a la
𝑑𝑥
función 𝑦 = 𝐹(𝑥) + 𝐶 la cual contiene una constante arbitraria 𝐶 que cumple las siguientes condiciones:
a) Se cumple la ecuación 𝑦 = 𝑓(𝑥, 𝑦) para todos los valores de 𝐶.
b) Se cumple para cualquier condición inicial 𝑦(𝑥0 ) = 𝑦0 .
Ejemplo 4. Determine si la función 𝑦 = 𝑥√1 − 𝑥 2 es la solución de la ecuación diferencial 𝑦𝑦 ′ = 𝑥 − 2𝑥 3 .
Solución.
−2𝑥 −𝑥 2
𝑦 = 𝑥√1 − 𝑥 2 ; 𝑦 ′ = 𝑥 + √1 − 𝑥 2 ; 𝑦 ′ = + √1 − 𝑥 2
2√1−𝑥 2 √1−𝑥 2
, −𝑥 2 +1−𝑥 2
𝑦′ = ; 𝑦 ′ √1 − 𝑥 2 = 1 − 2𝑥 2 ; multiplicando por 𝑥
√1−𝑥 2
𝑦 ′ 𝑦 = 𝑥 − 2𝑥 3 si es la solución
𝐶+𝑥
Ejemplo 5. Determine si la función 𝑦 = es la solución de la ecuación diferencial 𝑦 − 𝑥𝑦 ′ = 𝐶(1 +
1+𝐶𝑥
𝑥 2 𝑦 ′ ).
Solución.
𝐶+𝑥 (1+𝐶𝑥)−(𝐶+𝑥)𝐶 (1+𝐶𝑥)−(𝐶+𝑥)𝐶 1−𝐶 2
𝑦= ; 𝑦′ = ; 𝑦′ = ; 𝑦′ =
1+𝐶𝑥 (1+𝐶𝑥)2 (1+𝐶𝑥)2 (1+𝐶𝑥)2
Si 𝑦 − 𝑥𝑦 ′ = 𝐶(1 + 𝑥 2 𝑦 ′ ); 𝑦 − 𝑥𝑦′ = 𝐶 + 𝐶𝑥 2 𝑦′
𝑦−𝐶
𝑦 − 𝐶 = 𝑥𝑦′ + 𝐶𝑥 2 𝑦′ ; 𝑦 ′ (𝑥 + 𝐶𝑥 2 ) = 𝑦 − 𝐶 ; 𝑦 ′ = sustituyendo la función 𝑦.
𝑥+𝐶𝑥 2
𝐶+𝑥 𝐶+𝑥−𝐶(1+𝐶𝑥)
− 𝐶 𝑥(1−𝐶 2 ) 1−𝐶 2
𝑦 ′ = 1+𝐶𝑥 ; 𝑦′ = 1+𝐶𝑥
; 𝑦′ = ; 𝑦′ =
𝑥(1+𝐶𝑥) 𝑥(1+𝐶𝑥) 𝑥(1+𝐶𝑥)2 (1+𝐶𝑥)2
Si es solución.
Ejemplo 6. Pruebe que la relación 𝑥𝑦 2 + 𝑙𝑛|𝑥 + 𝑦| = 𝐶 es la solución de la ecuación diferencial
1 1
(𝑦 2 + ) 𝑑𝑥 + (2𝑥𝑦 + ) 𝑑𝑦 = 0.
𝑥+𝑦 𝑥+𝑦
Solución.
𝑑
𝑥𝑦 2 + 𝑙𝑛|𝑥 + 𝑦| = 𝐶 ; (𝑥𝑦 2 + 𝑙𝑛|𝑥 + 𝑦| = 𝐶) ;
𝑑𝑥
1 𝑑𝑦
2𝑥𝑦𝑦 ′ + 𝑦 2 + (1 + 𝑦 ′ ) = 0 si 𝑦 ′ = entonces
𝑥+𝑦 𝑑𝑥
𝑑𝑦 1 𝑑𝑦
2𝑥𝑦 + 𝑦2 + (1 + ) = 0 ; multiplicando por 𝑑𝑥
𝑑𝑥 𝑥+𝑦 𝑑𝑥
𝑑𝑥 𝑑𝑦 1 1
2𝑥𝑦𝑑𝑦 + 𝑦 2 𝑑𝑥 + + = 0 ; (𝑦 2 + ) 𝑑𝑥 + (2𝑥𝑦 + ) 𝑑𝑦 = 0
𝑥+𝑦 𝑥+𝑦 𝑥+𝑦 𝑥+𝑦
Si es solución
𝐶 2𝑦
Ejemplo 7. Determine si la relación 𝑥 = 𝑦𝑙𝑛𝑦 + es la solución de la ecuación diferencial 𝑦 ′ = .
𝑦 2𝑦𝑙𝑛(𝑦)+𝑦−𝑥
Solución.
𝑑 𝐶 𝐶
(𝑥 = 𝑦𝑙𝑛(𝑦) + ) ; 1 = 𝑦 ′ + 𝑦 ′ ln(𝑦) − 𝑦′ ; 𝐶 = 𝑥𝑦 − 𝑦 2 ln (𝑦)
𝑑𝑥 𝑦 𝑦2
𝐶 𝑥𝑦−𝑦 2 ln (𝑦)
1 = 𝑦′(1 + ln(𝑦) − ; 1 = 𝑦′(1 + ln(𝑦) − );
𝑦2 𝑦2
𝑥
1 = 𝑦 ′ (1 + ln(𝑦)) − + ln (𝑦)); 𝑦 = 𝑦′(𝑦 − 𝑥 + 2𝑦𝑙𝑛(𝑦)
𝑦
𝑦
𝑦′ = no es solución.
𝑦−𝑥+2ln (𝑦)
Ejemplo 8. Determine si la función 𝑦 = 𝑒 𝑥 (𝐴𝑐𝑜𝑠(𝑥) + 𝐵𝑠𝑒𝑛(𝑥)) + 𝑥 + 1 es la solución de la ecuación
diferencial 𝑦 ′′ − 2𝑦 ′ + 2𝑦 − 𝑥 = 0.
Solución.
Una ecuación diferencial es una ecuación la cual contiene derivadas, su expresión general es:
𝐹(𝑥, 𝑦, 𝑦 ′ , 𝑦 ′′ , … , 𝑦 (𝑛) ) = 0,
𝑑𝑦 𝑑2 𝑦 𝑑𝑛𝑦
donde 𝑦 ′ = , 𝑦 ′′ = , … , 𝑦 (𝑛) =
𝑑𝑥 𝑑𝑥 2 𝑑𝑥 𝑛
Si la ecuación diferencial contiene una sola variable independiente, entonces se le llama ecuación
diferencial ordinaria y el orden de la ecuación diferencial es igual al número de veces que ha sido
derivada la función, por ejemplo:
𝑑𝑦
𝑑𝑥
− 𝑥2𝑦 = 0 primer orden
𝑦 ′′ + 5𝑦 ′ + 𝑥 2 = sen(𝑥) segundo orden
𝑦 ′′′ + 3𝑦 ′′ + 𝑦 ′′ + 3𝑦 = 0 tercer orden
…, etc.
Así entonces, la solución de una ecuación diferencial de primer orden es una función, de segundo
orden son dos funciones, de tercer orden son tres funciones, etc.
Otra clasificación importante de las ecuaciones diferenciales es la Linealidad. Esta se considera
lineal si cumple con las siguientes condiciones:
a) La ecuación diferencial es de la forma
𝑑𝑛 𝑦 𝑑 𝑛−1 𝑦 𝑑2 𝑦 𝑑𝑦
𝑎𝑛 (𝑥) + 𝑎𝑛−1 (𝑥) + ⋯ + 𝑎2 (𝑥) + 𝑎1 (𝑥) + 𝑎0 (𝑥)𝑦 = 𝑓(𝑥)
𝑑𝑥 𝑛 𝑑𝑥 𝑛−1 𝑑𝑥 2 𝑑𝑥
b) La variable dependiente y todas sus derivadas deben ser de primer grado.
c) Si los coeficientes son variables. estos deberán depender de 𝑥, la cual es la variable independiente.
Ejemplos: Dadas las siguientes ecuaciones diferenciales determine si son o no lineales y explique porque.
𝑑𝑦
a) + tan(𝑦) = 𝑥 la tan(𝑦) no es lineal
𝑑𝑥
𝑑𝑦 2
b) 3 + 5𝑦 = 𝑠𝑒𝑛(𝑥) Lineal
𝑑𝑥 2
′′ ′
c) (1 − 𝑥𝑦)𝑦 + +5𝑥𝑦 + 5𝑦 = 0 el coeficiente contiene a la función
d) 5𝑥 2 𝑦 ′′ + 4𝑥𝑦 ′ + 3𝑦 = 𝑦 2 la función derecha no es lineal
e) 𝑥 3 𝑦 ′′′ + 2𝑥 2 𝑦′′ + 2𝑥𝑦 ′ + 4𝑦 = 0 Lineal
La solución de una ecuación diferencial.
𝑑𝑦
Si tenemos una ecuación diferencial de la forma = 𝑓(𝑥, 𝑦) le llamaremos la solución general a la
𝑑𝑥
función 𝑦 = 𝐹(𝑥) + 𝐶 la cual contiene una constante arbitraria 𝐶 que cumple las siguientes condiciones:
a) Se cumple la ecuación 𝑦 = 𝑓(𝑥, 𝑦) para todos los valores de 𝐶.
b) Se cumple para cualquier condición inicial 𝑦(𝑥0 ) = 𝑦0 .
Ejemplo 4. Determine si la función 𝑦 = 𝑥√1 − 𝑥 2 es la solución de la ecuación diferencial 𝑦𝑦 ′ = 𝑥 − 2𝑥 3 .
Solución.
−2𝑥 −𝑥 2
𝑦 = 𝑥√1 − 𝑥 2 ; 𝑦 ′ = 𝑥 + √1 − 𝑥 2 ; 𝑦 ′ = + √1 − 𝑥 2
2√1−𝑥 2 √1−𝑥 2
, −𝑥 2 +1−𝑥 2
𝑦′ = ; 𝑦 ′ √1 − 𝑥 2 = 1 − 2𝑥 2 ; multiplicando por 𝑥
√1−𝑥 2
𝑦 ′ 𝑦 = 𝑥 − 2𝑥 3 si es la solución
𝐶+𝑥
Ejemplo 5. Determine si la función 𝑦 = es la solución de la ecuación diferencial 𝑦 − 𝑥𝑦 ′ = 𝐶(1 +
1+𝐶𝑥
𝑥 2 𝑦 ′ ).
Solución.
𝐶+𝑥 (1+𝐶𝑥)−(𝐶+𝑥)𝐶 (1+𝐶𝑥)−(𝐶+𝑥)𝐶 1−𝐶 2
𝑦= ; 𝑦′ = ; 𝑦′ = ; 𝑦′ =
1+𝐶𝑥 (1+𝐶𝑥)2 (1+𝐶𝑥)2 (1+𝐶𝑥)2
Si 𝑦 − 𝑥𝑦 ′ = 𝐶(1 + 𝑥 2 𝑦 ′ ); 𝑦 − 𝑥𝑦′ = 𝐶 + 𝐶𝑥 2 𝑦′
𝑦−𝐶
𝑦 − 𝐶 = 𝑥𝑦′ + 𝐶𝑥 2 𝑦′ ; 𝑦 ′ (𝑥 + 𝐶𝑥 2 ) = 𝑦 − 𝐶 ; 𝑦 ′ = sustituyendo la función 𝑦.
𝑥+𝐶𝑥 2
𝐶+𝑥 𝐶+𝑥−𝐶(1+𝐶𝑥)
− 𝐶 𝑥(1−𝐶 2 ) 1−𝐶 2
𝑦 ′ = 1+𝐶𝑥 ; 𝑦′ = 1+𝐶𝑥
; 𝑦′ = ; 𝑦′ =
𝑥(1+𝐶𝑥) 𝑥(1+𝐶𝑥) 𝑥(1+𝐶𝑥)2 (1+𝐶𝑥)2
Si es solución.
Ejemplo 6. Pruebe que la relación 𝑥𝑦 2 + 𝑙𝑛|𝑥 + 𝑦| = 𝐶 es la solución de la ecuación diferencial
1 1
(𝑦 2 + ) 𝑑𝑥 + (2𝑥𝑦 + ) 𝑑𝑦 = 0.
𝑥+𝑦 𝑥+𝑦
Solución.
𝑑
𝑥𝑦 2 + 𝑙𝑛|𝑥 + 𝑦| = 𝐶 ; (𝑥𝑦 2 + 𝑙𝑛|𝑥 + 𝑦| = 𝐶) ;
𝑑𝑥
1 𝑑𝑦
2𝑥𝑦𝑦 ′ + 𝑦 2 + (1 + 𝑦 ′ ) = 0 si 𝑦 ′ = entonces
𝑥+𝑦 𝑑𝑥
𝑑𝑦 1 𝑑𝑦
2𝑥𝑦 + 𝑦2 + (1 + ) = 0 ; multiplicando por 𝑑𝑥
𝑑𝑥 𝑥+𝑦 𝑑𝑥
𝑑𝑥 𝑑𝑦 1 1
2𝑥𝑦𝑑𝑦 + 𝑦 2 𝑑𝑥 + + = 0 ; (𝑦 2 + ) 𝑑𝑥 + (2𝑥𝑦 + ) 𝑑𝑦 = 0
𝑥+𝑦 𝑥+𝑦 𝑥+𝑦 𝑥+𝑦
Si es solución
𝐶 2𝑦
Ejemplo 7. Determine si la relación 𝑥 = 𝑦𝑙𝑛𝑦 + es la solución de la ecuación diferencial 𝑦 ′ = .
𝑦 2𝑦𝑙𝑛(𝑦)+𝑦−𝑥
Solución.
𝑑 𝐶 𝐶
(𝑥 = 𝑦𝑙𝑛(𝑦) + ) ; 1 = 𝑦 ′ + 𝑦 ′ ln(𝑦) − 𝑦′ ; 𝐶 = 𝑥𝑦 − 𝑦 2 ln (𝑦)
𝑑𝑥 𝑦 𝑦2
𝐶 𝑥𝑦−𝑦 2 ln (𝑦)
1 = 𝑦′(1 + ln(𝑦) − ; 1 = 𝑦′(1 + ln(𝑦) − );
𝑦2 𝑦2
𝑥
1 = 𝑦 ′ (1 + ln(𝑦)) − + ln (𝑦)); 𝑦 = 𝑦′(𝑦 − 𝑥 + 2𝑦𝑙𝑛(𝑦)
𝑦
𝑦
𝑦′ = no es solución.
𝑦−𝑥+2ln (𝑦)
Ejemplo 8. Determine si la función 𝑦 = 𝑒 𝑥 (𝐴𝑐𝑜𝑠(𝑥) + 𝐵𝑠𝑒𝑛(𝑥)) + 𝑥 + 1 es la solución de la ecuación
diferencial 𝑦 ′′ − 2𝑦 ′ + 2𝑦 − 𝑥 = 0.
Solución.