100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Case

Ejercicios de ecuaciones reversibles y homogéneas

Rating
-
Sold
-
Pages
5
Grade
A+
Uploaded on
16-02-2021
Written in
2020/2021

Ejercicios de ecuaciones reversibles y homogéneas

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
February 16, 2021
Number of pages
5
Written in
2020/2021
Type
Case
Professor(s)
Espiritu
Grade
A+

Subjects

Content preview

Método de reducibles a variables separables.
Las ecuaciones diferenciales reducibles a variables separables son en esencia el mismo método sólo que
aplicando previamente un cambio de variable.

Ejemplo 13.

Resuelva la ecuación diferencial reducible a variables separables siguiente

(𝑥 + 𝑦 + 1)𝑑𝑥 = (2𝑥 + 2𝑦 − 1)𝑑𝑦

Solución.

(𝑥 + 𝑦 + 1)𝑑𝑥 = (2𝑥 + 2𝑦 − 1)𝑑𝑦 si 𝑢 = 𝑥 + 𝑦 entonces y
𝑑 𝑑𝑢 𝑑𝑦 𝑑𝑦 𝑑𝑢
(𝑢 = 𝑥 + 𝑦); = 1+ , = −1
𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥

(2𝑥 + 2𝑦 − 1)𝑑𝑦 = (𝑥 + 𝑦 + 1)𝑑𝑥
𝑑𝑦 𝑥+𝑦+1 𝑑𝑢 𝑢+1
= sustituyendo queda como −1 =
𝑑𝑥 2𝑥+2𝑦−1 𝑑𝑥 2𝑢−1

𝑑𝑢 𝑢+1 𝑑𝑢 𝑢+1+2𝑢−1 𝑑𝑢 3𝑢
= +1; = ; = separando las variables queda
𝑑𝑥 2𝑢−1 𝑑𝑥 2𝑢−1 𝑑𝑥 2𝑢−1

2𝑢−1
𝑑𝑢 = 𝑑𝑥 aplicando el operador de integración en ambos lados de la ecuación diferencial
3𝑢

2𝑢−1
∫ 𝑑𝑢 = ∫ 𝑑𝑥 ; dividiendo el lado izquierdo de la igualdad
3𝑢

2 1 2 1 1
∫ (3 − 3𝑢) 𝑑𝑢 = ∫ 𝑑𝑥 + 𝐶 ; 3
∫ 𝑑𝑢 − 3 ∫ 𝑢 𝑑𝑢 = ∫ 𝑑𝑥 + 𝐶
2 1
𝑢 − ln(𝑢) = 𝑥 + 𝐶; 2𝑥 + 2𝑦 − ln(𝑥 + 𝑦) = 𝑥 + 𝐶
3 3

2𝑦 − 𝑥 − ln(𝑥 + 𝑦) = 𝐶

Ejemplo 14.

Halle la solución de la siguiente ecuación diferencial por reducibles a variables separables
(𝑥 2 𝑦 3 + 𝑦 + 𝑥 − 2)𝑑𝑥 + (𝑥 3 𝑦 2 + 𝑥)𝑑𝑦 = 0 considere que 𝑢 = 𝑥𝑦

Solución.

(𝑥 2 𝑦 3 + 𝑦 + 𝑥 − 2)𝑑𝑥 + (𝑥 3 𝑦 2 + 𝑥)𝑑𝑦 = 0
𝑑𝑦 −(𝑥 2 𝑦 3 +𝑦+𝑥−2)
(𝑥 3 𝑦 2 + 𝑥)𝑑𝑦 = −(𝑥 2 𝑦 3 + 𝑦 + 𝑥 − 2)𝑑𝑥; =
𝑑𝑥 𝑥 3 𝑦 2 +𝑥

𝑑𝑢
𝑢 𝑑𝑦 𝑥 −𝑢
𝑦= ; = 𝑑𝑥
igualando las derivadas y sustituyendo el valor de 𝑦.
𝑥 𝑑𝑥 𝑥2

𝑑𝑢 𝑢 𝑢 𝑑𝑢 𝑢3 𝑢 𝑑𝑢 𝑢3 +𝑢+𝑥2 −2𝑥
𝑥 −𝑢 −(𝑥 2 ( )3 + +𝑥−2) 𝑥 −𝑢 −( + +𝑥−2) 𝑥 −𝑢 −( )
𝑑𝑥
= 𝑥
𝑢
𝑥
; 𝑑𝑥
= 𝑥 𝑥 𝑑𝑥
; = 𝑥
𝑥2 𝑥 3 ( )2 +𝑥 𝑥2 𝑥𝑢2 +𝑥 𝑥2 𝑥𝑢2 +𝑥
𝑥

𝑑𝑢
𝑥 −𝑢 −(𝑢3 +𝑢+𝑥 2 −2𝑥) 𝑑𝑢 −𝑢3 −𝑢−𝑥 2 +2𝑥
𝑑𝑥
= ; 𝑥 = + 𝑢;
𝑥2 𝑥 2 (𝑢2 +1) 𝑑𝑥 𝑢2 +1

𝑑𝑢 −𝑢3 −𝑢−𝑥 2 +2𝑥+𝑢3 +𝑢 𝑑𝑢 −𝑥 2 +2𝑥
𝑥 = ; 𝑥 = ; (𝑢2 + 1)𝑑𝑢 = (−𝑥 + 2)𝑑𝑥
𝑑𝑥 𝑢2 +1 𝑑𝑥 𝑢2 +1

, 𝑢3 𝑥2
∫(𝑢2 + 1) 𝑑𝑢 = ∫(−𝑥 + 2) 𝑑𝑥; 3
+ 𝑢 = − +2x+C
2

1 𝑥2
𝑥 3 𝑦 3 + 𝑥𝑦 = − + 2𝑥 + 𝐶; 2𝑥 3 𝑦 3 + 6𝑥𝑦 + 3𝑥 2 − 12𝑥 = 𝐶
3 2



Ejemplo 15.

Halle la solución de la siguiente diferencial reducible a variables separables.
𝑑𝑦 2𝑥 − 3𝑦 + 1
− =0
𝑑𝑥 −6𝑥 + 9𝑦 + 2

Solución.
𝑑𝑦 2𝑥−3𝑦+1 𝑑𝑦 2𝑥−3𝑦+1 𝑑𝑦 2𝑥−3𝑦+1 𝑑𝑢 𝑑𝑦
− = 0; = ; = cambio de variable 𝑢 = 2𝑥 − 3𝑦; =2−3 ;
𝑑𝑥 −6𝑥+9𝑦+2 𝑑𝑥 −6𝑥+9𝑦+2 𝑑𝑥 −3(2𝑥−3𝑦)+2 𝑑𝑥 𝑑𝑥
𝑑𝑢
−2 𝑑𝑦
𝑑𝑥
=
−3 𝑑𝑥

𝑑𝑢
−2 𝑢+1 𝑑𝑢 −3𝑢−3 𝑑𝑢 −3𝑢−3 𝑑𝑢 −3𝑢−3−6𝑢+4
𝑑𝑥
= ; −2= ; = + 2; =
−3 −3𝑢+2 𝑑𝑥 −3𝑢+2 𝑑𝑥 −3𝑢+2 𝑑𝑥 −3𝑢+2

𝑑𝑢 −9𝑢+1 −3𝑢+2 −3𝑢+2
= ; 𝑑𝑢 = 𝑑𝑥; ∫ 𝑑𝑢 = ∫ 𝑑𝑥 dividiendo
𝑑𝑥 −3𝑢+2 −9𝑢+1 −9𝑢+1

5
1 1 5
∫ (3 + −9𝑢+1
3
) 𝑑𝑢 = ∫ 𝑑𝑥 ;
3
𝑢−
27
ln(−9𝑢 + 1) = 𝑥 + 𝐶 ;

1 5
(2𝑥 − 3𝑦) − ln(−9(2𝑥 − 3𝑦) + 1) = 𝑥 + 𝐶
3 27

1 5
𝑦+ 𝑦+ ln(1 + 27𝑦 − 18𝑥) = 𝐶
3 27




Ejemplo 16.

Halle la solución de la siguiente ecuación:

𝑦 ′ √𝑥 + 𝑦 + 1 = 𝑥 + 𝑦 − 1

Solución.

𝑦 ′ √𝑥 + 𝑦 + 1 = 𝑥 + 𝑦 + 1 − 1 − 1; si 𝑢 = 𝑥 + 𝑦 + 1 entonces;
𝑑𝑦 𝑥+𝑦−2 𝑑𝑢 𝑑𝑦 𝑑𝑦 𝑑𝑢
= si =1+ ; = − 1 sustituyendo y separando las variables
𝑑𝑥 √𝑥+𝑦+1 𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥

𝑑𝑢 𝑢−2 𝑑𝑢 𝑢+√𝑢−2
= +1; =
𝑑𝑥 √𝑢 𝑑𝑥 √𝑢

√𝑢 √𝑢
𝑑𝑢 = 𝑑𝑥 aplicando el operador de integración ∫ 𝑑𝑢 = ∫ 𝑑𝑥 si
𝑢+√𝑢−2 𝑢+√𝑢−2

𝑧 = √𝑢 ; 𝑢 = 𝑧 2 ; aplicando el operador de derivación en ambos lados de la igualdad
𝑑 𝑑𝑢 𝑑𝑧
(𝑢 = 𝑧 2 ); = 2𝑧 ; 𝑑𝑢 = 2𝑧𝑑𝑧 sustituyendo
𝑑𝑥 𝑑𝑥 𝑑𝑥

2𝑧 2 𝑑𝑧 𝑧2 −𝑧+2
∫ 𝑧 2+𝑧−2 = ∫ 𝑑𝑥 + 𝐶; dividiendo 𝑧 2 +𝑧−2
=1+
𝑧 2 +𝑧−2
$9.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jocelynmarcial30

Also available in package deal

Get to know the seller

Seller avatar
jocelynmarcial30 instituto politécnico nacional
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
36
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions