100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Choose a title that best describes your document

Beoordeling
-
Verkocht
-
Pagina's
151
Cijfer
A+
Geüpload op
05-12-2025
Geschreven in
2025/2026

Choose a title that best describes your document

Instelling
CPA - Certified Public Accountant
Vak
CPA - Certified Public Accountant











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
CPA - Certified Public Accountant
Vak
CPA - Certified Public Accountant

Documentinformatie

Geüpload op
5 december 2025
Aantal pagina's
151
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Solutions Manual for FGalois
Theory, 5e by Ian Stewart (All
Chapters)

, Introduction 1



Introduction
This Solutions Manual contains solutions to all of the exercises in the Fifth Edi-
tion of Galois Theory.
Many of the exercises have several different solutions, or can be solved using
several different methods. If your solution is different from the one presented here, it
may still be correct — unless it is the kind of question that has only one answer.
The written style is informal, and the main aim is to illustrate the key ideas in-
volved in answering the questions. Instructors may need to fill in additional details
where these are straightforward, or explain assumed background material. On the
whole, I have emphasised ‘bare hands’ methods whenever possible, so some of the
exercises may have more elegant solutions that use higher-powered methods.




1 Classical Algebra
1.1 Let u = x + iy ≡ (x, y), v = a + ib ≡ (a, b), w = p + iq ≡ (p, q). Then

uv = (x, y)(a, b)
= (xa − yb, xb + ya)
= (ax − by, bx + ay)
= (a, b)(x, y)
= vu


(uv)w = [(x, y)(a, b)](p, q)
= (xa − yb, xb + ya)(p, q)
= (xap − ybp − xbq − yaq, xaq − ybq + xbp + yap)
= (x, y)(ap − bq, aq + bp)
= (x, y)[(a, b)(p, q)]
= (uv)w

1.2 (1) Changing the signs of a, b does not affect (a/b)2, so we may assume a, b > 0.
(2) Any non-empty set of positive integers has a minimal element. Since b > 0 is
an integer, the set of possible elements b has a minimal element.

,
, 2

(3) We know that a2 = 2b2. Then

(2b − a)2 − 2(a − b)2 = 4b2 − 4ab + a2 − 2(a2 − 2ab + b2)
= 2b2 − a2 = 0

(4) If 2b ≤ a then 4b2 ≤ a2 = 2b2, a contradiction. If a ≤ b then 2a2 ≤ 2b2 = a2,
a contradiction.
(5) If a —b ≥ b then a ≥ 2b so a2 ≥ 4b2 = 2a2, a contradiction. Now (3) contra-
dicts the minimality of b.
Note on the Greek approach.
The ancient Greeks did not use algebra. They expressed them same underlying
idea in terms of a geometric figure, Figure 1.





FIGURE 1: Greek proof that 2 is irrational.

Start with square ABCD and let CE = AB. Complete square AEFG. The rest of
the figure leads to a point H on AF. Clearly AC/AB = AF/AE. In modern notation,
let AB = b′, AC = a′. Since AB = HF = AB and BH = AC, we have AE a= a′ + a′
b′ = b,
√ AF = a + 2b = a, say. Therefore a + b = b, b = a − b, and b = b′ .
say, and ′ ′ ′ ′ ′

If 2 is rational, we can make a b integers, in which case a′ b′
, √ , are also integers,
and the same process of constructing rationals equal to 2 with ever-decreasing
numerators and denominators could be carried out. The Greeks didn’t argue the proof
quite that way: they observed that the ‘anthyphaeresis’ of AF and AE goes on forever.
This process was their version of what we now call the continued fraction expansion
(or the Euclidean algorithm, which is equivalent). It stops after finitely many steps if
and only if the initial ratio lies in Q. See Fowler (1987) pages 33–35.
1.3 A nonzero rational can be written uniquely, up to order, as a produce of prime
powers (with a sign ±):
m m
r = ±p1 1 · · · pk k
where the m j are integers. So

r2 = p12m1 · · · pk2mk
$21.49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
PROFDOCDIGOTALLIBRARIES

Maak kennis met de verkoper

Seller avatar
PROFDOCDIGOTALLIBRARIES Phoenix University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
Nieuw op Stuvia
Lid sinds
3 weken
Aantal volgers
0
Documenten
126
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen