to accompany
ORBITAL MECHANICS FOR ENGINEERING STUDENTS
Howard D. Curtis
Embry-Riddle Aeronautical University
Daytona Beach, Florida
,Solutions Manual Orbital Mechanics for Engineering Students Chapter 1
Problem 1.1
(a)
( )(
A A = Ax iˆ + Ay ˆj + Azkˆ Axiˆ + Ayˆj + Azkˆ )
( ) ( ) (
= Axiˆ Axiˆ + Ayˆj + Azkˆ + Ayˆj Axiˆ + Ayˆj + Azkˆ + Azkˆ Axiˆ + Ayˆj + Azkˆ )
( ) ( ) ( ) (
= Ax2 (iˆ iˆ) + Ax Ay iˆ ˆj + Ax Az (iˆ kˆ ) + Ay Ax ˆj iˆ + Ay2 ˆj ˆj + Ay Az ˆj kˆ )
( )
+ AzAx (kˆ iˆ) + AzAy kˆ ˆj + Az2 (kˆ kˆ )
= Ax2 (1) + Ax Ay (0) + Ax Az (0) + Ay Ax (0) + Ay2 (1) + Ay Az (0) + Az Ax (0) + Az Ay (0) + Az2 (1)
= Ax2 + Ay2 + Az2
But, according to the Pythagorean Theorem, A 2x + A y2 + A z2 = A2 , where A = A , the magnitude of
the vector A . Thus A A = A2 .
(b)
iˆ ˆj kˆ
A (B C) = A Bx By Bz
Cx Cy Cz
( ) ( )
= Ax iˆ + Ay ˆj + Azkˆ iˆ ByCz − BzCy − ˆj (BxCz − BzCx ) + kˆ BxCy − ByCx
( )
( )
= Ax ByCz − BzCy − Ay (BxCz − BzCx ) + Az BxCy − ByCx ( )
or
A (B C) = AxByCz + AyBzCx + AzBxCy − AxBzCy − AyBxCz − AzByCx (1)
Note that (A B) C = C (A B) , and according to (1)
C (A B) = CxAyBz + Cy AzBx + Cz AxBy − CxAzBy − Cy AxBz − Cz AyBx (2)
The right hand sides of (1) and (2) are identical. Hence A ( B C) = (A B) C .
(c)
iˆ ˆj kˆ iˆ ˆj kˆ
(
A (B C) = Axiˆ + Ayˆj + Azkˆ Bx ) By Bz = Ax Ay Az
Cx ByCz − BzCy BzCx − BxCy BxCy − ByCx
Cy Cz
( ) (
= Ay BxCy − ByCx − Az (BzCx − BxCz ) iˆ + Az ByCz − BzCy − Ax BxCy − ByCx ˆj
) ( )
+ A (B C − B C ) − A B C − B C kˆ
x z x x z y y z z y
( )
( y x y z x z y y x z z x) ( x y x z y z x x y z z y)
= A B C + A B C − A B C − A B C iˆ + A B C + A B C − A B C − A B C ˆj
( x z x y z y x x z y y z)
+ A B C + A B C − A B C − A B C kˆ
= Bx (AyCy + AzCz ) − Cx (AyBy + AzBz ) iˆ + By (AxCx + AzCz ) − Cy (AxBx + AzBz ) ˆj
z( x x y y) z( x x y y)
+ B A C + A C − C A B + A B kˆ
Add and subtract the underlined terms to get
1
, Solutions Manual Orbital Mechanics for Engineering Students Chapter 1
( ) (
A (B C) = Bx AyCy + AzCz + AxCx − Cx AyBy + AzBz + AxBx iˆ
)
( ) (
+ By AxCx + AzCz + AyCy − Cy AxBx + AzBz + AyBy ˆj
)
( y y z z z x x )
+ B A C + A C + A C − C A B + A B + A B kˆ
z x x y y (
z z
)
(
= Bx iˆ + By ˆj + Bzkˆ )(A C + A C + A C ) − (C iˆ + C ˆj + C kˆ )(A B + A B
x x y y z z x y z x x y y + AzBz )
or
A (B C) = B(A C) − C(A B)
Problem 1.2 Using the interchange of Dot and Cross we get
(A B) (C D) = (A B) C D
But
(A B) C D = − C (A B) D (1)
Using the bac – cab rule on the right, yields
(A B) C D = −A(C B) − B(C A) D
or
(A B) C D = −(A D)(C B) + (B D)(C A) (2)
Substituting (2) into (1) we get
(A B) C D = (A C)(B D) − (A D)(B C)
Problem 1.3
Velocity analysis
From Equation 1.38,
v = vo + rrel + vrel . (1)
From the given information we have
vo = −10Iˆ + 30Jˆ − 5 0K̂ (2)
( ) ( )
rrel = r − ro = 150Iˆ − 200Jˆ + 300K̂ − 300Iˆ + 200Jˆ + 100K̂ = −150Iˆ − 400Jˆ + 200K̂ (3)
Iˆ Jˆ K̂
rrel = 0.6 −0.4 1.0 = 320Iˆ − 270Jˆ − 300K̂ (4)
−150 −400 200
2