100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions Manual — An Introduction to Metric Spaces, 1st Edition — Dhananjay Gopal & Aniruddha Deshmukh — ISBN 9780367493493 — Latest Update 2025/2026 — (All Chapters Covered 1–7)

Beoordeling
-
Verkocht
-
Pagina's
27
Cijfer
A+
Geüpload op
19-11-2025
Geschreven in
2025/2026

Solutions Manual companion for An Introduction to Metric Spaces (1st Edition) by Dhananjay Gopal and Aniruddha Deshmukh (ISBN 9780367493493) is structured for academic cataloguing and SEO as an instructor resource aligned with the textbook’s verified chapter organization. According to the publisher’s Table of Contents, the sequence proceeds with Chapter 1: Set Theory, then Chapter 2: Metric Spaces, followed by Chapter 3: Complete Metric Spaces, Chapter 4: Compact Metric Spaces, Chapter 5: Connected Spaces, Chapter 6: Continuity, and finally Chapter 7: Banach Fixed Point Theorem and Its Applications.

Meer zien Lees minder
Instelling
An Introduction To Metric Spaces 1st
Vak
An Introduction to Metric Spaces 1st










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
An Introduction to Metric Spaces 1st
Vak
An Introduction to Metric Spaces 1st

Documentinformatie

Geüpload op
19 november 2025
Aantal pagina's
27
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

An Introduction to Metric

Spaces 1st Edition
ST
UV

SOLUTIONS
IA

MANUAL
_A
PP

Dhananjay Gopal
RO

Aniruddha Deshmukh
VE

Comprehensive Solutions Manual for
Instructors and Students
D?

© Dhananjay Gopal & Aniruddha Deshmukh. All rights reserved. Reproduction or

distribution without permission is prohibited.




©MedConnoisseur

, Solutions Manual for An Introduction to Metric
Spaces, 1e Dhananjay Gopal, Aniruddha
Deshmukh (All Chapters)
Chapter 1
Set Theory
ST

Ex 1.1. Collection of lines with constant slope and changing intercepts (or, vice-versa) does the job.
That is,
F = {Lr |r ∈ R} ,
UV

where, Lr = {(x, y) ∈ R2 |x + y = r} are lines with slope −1 and intercept r. Other similar sets can be
constructed which can be indexed by R.

Ex 1.2. A few subsethood relations are
IA

N⊆Z⊆Q⊆R
N ⊆ Q+ ⊆ R+ ⊆ R
N ⊆ Q∗ ⊆ R∗ ⊆ R
_A

Similar relations can be obtained by comparing elements.

Ex 1.3. The results for N are given. Other results can be constructed in a similar manner.

N∪Z=Z
PP

N∩Z=N
N∪Q=Q
N∩Q=N
N ∪ Q+ = Q+
RO

N ∩ Q+ = N
N ∪ Q− = {x ∈ Q|x < 0 or x ∈ N}
N ∩ Q− = ∅
N ∪ Q∗ = Q∗
N ∩ Q∗ = N
VE

N ∪ R + = R+
N ∩ R+ = N
N ∪ R− = {x ∈ R|x < 0 or x ∈ N}
N ∩ R− = ∅
D?

N ∪ R∗ = R∗
N ∩ R∗ = N

A few observations that can be made are as follows. The reader can make as many observations as they
want to.

1. A ⊂ B implies A ∪ B = B and A ∩ B = A.

2. Some of the (newly formed) sets are merely a result of union/intersection of known sets.
Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?
1

, Ex 1.4. If F is a pair-wise disjoint family indexed by Λ, then
T
Aλ 6= ∅ would imply the existence
λ∈Λ
of some element x in all of Aλ ’s contradicting the pair-wise disjointness. Thus, any pair-wise disjoint
family is disjoint.
The family {{1, 2} , {2, 3} , {1, 3}} is disjoint but not pair-wise disjoint, since {1, 2} ∩ {2, 3} = {2} =
6 ∅.

Ex 1.5. Example in Solution to exercise 1.4 does the job.

Ex 1.6. Prove the two-way subsethood for each of the equalities using the basic principles of logic and
properties of conjunction and disjunction operators.

Ex 1.7. Prove the two-way subsethood for each of the equalities using the basic principles of logic and
ST

properties of conjunction and disjunction operators.

Ex 1.8. P (∅) = {∅}.

Ex 1.9. The three sets cannot be equal since the elements in all three sets are different. R3 contains
UV

3-tuples, while (R × R) × R and R × (R × R) contains 2-tuple. Also, the first entry in a 2-tuple of
(R × R) × R is again a 2-tuple, while for elements in R × (R × R), the second entry is a 2-tuple.
Q S
Ex 1.10. Aλ = ∅, because if not so, the choice function f : ∅ → Aλ will be such that f (λ) ∈ Aλ .
λ∈∅ λ∈∅
This is possible only when we have such λ’s. Many also argue that since ∅ does not have any elements,
IA

this is vacously true. However, even in such an argument, the empty product is not defined. If there is
a difficulty to the reader in understanding this, the reader may take it as a convention.

Ex 1.11. (x1 , x2 , · · · , xn ) L (y1 , y2 , · · · , yn ) if and only if
_A

6 y1 ⇒ x1 R1 y1 ) and (x1 = y1 and x2 6= y2 ⇒ x2 R2 y2 ) and · · · and
(x1 =
(x1 = y1 , x2 = y2 , · · · , xn−1 = yn−1 ⇒ xn Rn yn )
PP

Ex 1.12.

≤ : Refexive, Anti-symmetric, Transitive
⊆ : Refexive, Anti-symmetric, Transitive
= : Refexive, Symmetric, Anti-symmetric, Transitive
RO

| : Refexive, Anti-symmetric, Transitive
≡ : Refexive, Symmetric, Transitive

Ex 1.13. Generalising modulo relation on Z for n ∈ N, we have m1 ≡ m2 (mod n) if and only if
n|m1 − m2 .
VE

The equivalence classes for this relation are {[0] , [1] , [2] , · · · , [n − 1]}, and an integer m is in an equiv-
alence class j if and only if the remainder after dividing m by n is r.

Ex 1.14. The equivalence classes for = relation on X for each x ∈ X are [x] = {x}.
The equivalence classes for ≡ (modulo relation) are as in solution to exercise 1.13.
D?

Ex 1.15. In the set X = {{1} , {2} , {3} , {1, 2} , {2, 3} , {1, 3}} equipped with ⊆ relation, there is no
least element.

Ex 1.16. In the example of solution to exercise 1.15, the sets {1} , {2} , {3} are minimal elements and
the sets {1, 2} , {2, 3} , {1, 3} are maximal elements..

Ex 1.17. In general, it is not true. For X = {1, 2, 3}, the POSET (P (X) , ⊆) has a least element,
namely ∅, but the subset {{1} , {2} , {3}} of P (X) has no least element.
Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MedConnoisseur West Virgina University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2525
Lid sinds
3 jaar
Aantal volgers
1735
Documenten
2283
Laatst verkocht
3 dagen geleden
MedConnoisseur Study Hub – Verified Solutions, Test Banks &amp; Guides for Medical, Nursing, Business, Engineering, Accounting, Chemistry, Biology &amp; Other Subjects

Welcome to Your Ultimate Study Resource Hub! Looking for high-quality, reliable, and exam-ready study materials? You’re in the right place. Our shop specializes in original publisher content, including solutions manuals, test banks, and comprehensive study guides that are ideal for university and college students across various subjects. Every document is in PDF format and available for instant download—no waiting, no hassle. That means you get immediate access to top-tier academic resources the moment you need them, whether you're cramming for an exam or studying ahead. These materials are especially effective for exam preparation, offering step-by-step solutions, real test formats, and well-organized study guides that align with your coursework and textbooks. Whether you're a visual learner, a problem-solver, or need practice questions—there’s something for every study style. Love what you get? Share it! Help your mates and classmates succeed too by referring them to our shop. More learners, more success for all.

Lees meer Lees minder
4.0

189 beoordelingen

5
99
4
37
3
24
2
9
1
20

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen