100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Study Notes: Function Image Problems - Techniques

Beoordeling
-
Verkocht
-
Pagina's
27
Geüpload op
19-11-2025
Geschreven in
2025/2026

This section focuses on techniques for solving function image problems, specifically using parity (odd/even properties), special values, and limits.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
19 november 2025
Aantal pagina's
27
Geschreven in
2025/2026
Type
College aantekeningen
Docent(en)
David klein
Bevat
Alle colleges

Voorbeeld van de inhoud

Study Notes: Function Image Problems -
Techniques

Institution: California State University, Northridge(Northridge, CA)

Course: Math 250(Vector Calculus)

Instructor: David Klein

Instructor Time: Last Tuesday



This section focuses on techniques for solving function image problems, specifically
using parity (odd/even properties), special values, and limits.
The context introduces three key techniques for solving problems related to
function graphs:
1. Parity : Determining if a function is odd, even, or neither.

o Odd functions have graphs symmetric about the origin. Their domain
must be symmetric about the origin, and �( − �) =− �(�).

o Even functions have graphs symmetric about the y-axis. Their
domain must be symmetric about the origin, and �( − �) = �(�).

2. Special Value Method : Substituting specific, convenient values for the
variable (often 0, 1, -1, or values that simplify the expression) to test against
the graphs properties or to eliminate options.

3. Limit Method : Examining the behavior of the function as the variable
approaches certain values, especially infinity or zero, to understand
asymptotes or the functions trend.



Lets break down the provided examples:

Technique 01: Determining Function Graph from its Formula
Example 1-1:

, ln|�|
 Problem: The approximate graph of the function �(�) = �
on the interval
( − ∞, 0) ∪ (0, + ∞) is given.

 Analysis using Parity:

o The domain is � ≠ 0, which is symmetric about the origin.
o Lets check for odd/even properties:
ln|−�| ln|�| ln|�|
�( − �) = −�
= −�
=− �
=− �(�).

o Since �( − �) =− �(�), the function is odd. This means its graph is
symmetric about the origin.
o Elimination: Options B and D are eliminated because their graphs do
not exhibit origin symmetry.

 Analysis using Special Value Method:

o Lets pick a value, say � = �.
ln|�| ln� 1
o �(�) = �
= �
= �.

o Looking at the remaining options (A and C), option A shows a positive
value at � = �, while option C shows a negative value.
1
o Conclusion: Since �(�) = � > 0, option A is selected.

 Analysis using Limit Method:
ln�
o As � → 0+ , ln� →− ∞ and � → 0+ . The ratio �
tends to −∞.
ln|�|
o As � → 0− , ln|�| →− ∞ and � → 0− . The ratio �
tends to +∞.

o This behavior (approaching +∞ as � → 0− ) is consistent with option A.

 Answer: A

Example 1-2:
 Problem: The graph of the function �(�) = �sin� is given.

 Analysis using Parity:

o The domain is ℝ, which is symmetric about the origin.
o �( − �) = ( − �)sin( − �) = ( − �)( − sin�) = �sin� = �(�).

, o Since �( − �) = �(�), the function is even. Its graph is symmetric
about the y-axis.
o Elimination: Option A is eliminated because its graph is not
symmetric about the y-axis.

 Analysis using Special Value Method:

o Let � = �. �(�) = �sin(�) = � ⋅ 0 = 0.
� � � � � �
o Let � = 2. �( 2 ) = 2 sin( 2 ) = 2 ⋅ 1 = 2.
� � � � � �
o Let � =− 2. �( − 2 ) =− 2 sin( − 2 ) =− 2 ⋅ ( − 1) = 2.

o Consider option C: At � = �, the graph shows a value close to 0, but it
seems to be negative. This contradicts �(�) = 0. So, C is eliminated.

o Consider option D: At � = 2, the graph shows a positive value. At � =−
� � �
2
, it also shows a positive value. This is consistent with �( 2 ) = 2.

o Conclusion: Option D fits the special values.

 Analysis using Limit Method:

o As � → ∞, the function oscillates between −� and �.

 Analysis using Monotonicity (from context):

o The context mentions that for � ∈ (0, �), the function is monotonically
increasing. Lets check this.

o �′(�) = sin� + �cos�.

o For � ∈ (0, 2 ), sin� > 0 and cos� > 0, so �′ (�) > 0.

o For � ∈ ( 2 , �), sin� > 0 and cos� < 0. The sign of �′(�) depends on the
values.

o The context states that for � ∈ (0, �), the function is monotonically
increasing. This eliminates option B, which shows a decrease in part
of this interval.

 Answer: D

Practice Problem 1:
 Problem: The approximate graph of the function �(�) = �cos� is given.

 Analysis using Parity:
$10.39
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
enricowintheiser

Maak kennis met de verkoper

Seller avatar
enricowintheiser All Types of Notes
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
5 maanden
Aantal volgers
0
Documenten
16
Laatst verkocht
5 maanden geleden

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen