Linear Algebra – 4th Edition
ST
UV
INSTRUCTOR’S
IA
SOLUTIONS
_A
MANUAL
PP
C. Henry Edwards
RO
David E. Penney
David T. Calvis
VE
Comprehensive Solutions Manual for
D?
Instructors and Students
??
© C. Henry Edwards, David E. Penney & David T. Calvis
All rights reserved. Reproduction or distribution without permission is prohibited.
©STUDYSTREAM
, TABLE OF CONTENTS
Differential Equations and Linear Algebra – 4th
Edition
ST
C. Henry Edwards, David E. Penney & David T. Calvis
UV
Chapter 1. First- Order Differential Equations
Chapter 2. Mathematical Models and Numerical Methods
Chapter 3. Linear Systems and Matrices
Chapter 4. Vector Spaces
IA
Chapter 5. Higher- Order Linear Differential Equations
Chapter 6. Eigenvalues and Eigenvectors
Chapter 7. Linear Systems of Differential Equations
_A
Chapter 8. Matrix Exponential Methods
Chapter 9. Nonlinear Systems and Phenomena
Chapter 10. Laplace Transform Methods
Chapter 11. Power Series Methods
PP
RO
VE
D?
??
, CHAPTER 1
ST
FIRST-ORDER DIFFERENTIAL EQUATIONS
SECTION 1.1
UV
DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS
The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of dif-
ferential equations, and to show the student what is meant by a solution of a differential equation.
Also, the use of differential equations in the mathematical modeling of real-world phenomena is
outlined.
IA
Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the
given differential equations. We include here just some typical examples of such verifications.
_A
3. If y1 cos 2x and y2 sin 2x , then y1 2sin 2x y2 2 cos 2x , so
y1 4cos 2x 4y1 and y2 4sin 2x 4 y2 . Thus y1 4 y1 0 and y2 4 y2 0 .
4. If y1 e3x and y 2 e3x , then y1 3 e3x and y 2 3 e3x , so y1 9e3x 9 y 1 and
PP
y2 9e3x 9 y 2 .
5. If y ex ex , then y ex ex , so y y ex ex ex ex 2 e x . Thus
y y 2 ex .
RO
6. If y1 e2x and y 2 x e2 x , then y1 2 e2 x , y1 4 e2 x , y2 e2 x 2x e2 x , and
y2 4 e2 x 4x e2 x . Hence
y1 4 y1 4 y1 4 e2x 4 2 e2x 4 e2x 0
VE
and
y2 4 y2 4 y2 4 e2x 4x e2x 4 e2x 2x e2x 4 x e2x 0.
D?
8. If y1 cos x cos 2x and y2 sin x cos 2x , then y1 sin x 2sin 2x,
y1 cos x 4 cos 2x, y2 cos x 2sin 2x , and y2 sin x 4 cos 2x. Hence
y1 y1 cos x 4 cos 2x cos x cos 2x 3cos 2x
and
??
y2 y2 sin x 4cos 2x sin x cos 2x 3cos 2x.
1
Copyright © 2018 Pearson Education, Inc.
, 2 Chapter 1: First-Order Differential Equations
11. If y y1 x 2 , then y 2 x 3 and y 6 x4 , so
x2 y 5x y 4 y x2 6 x4 5x 2 x3 4 x2 0.
ST
If y y 2 x2 ln x , then y x3 2 x3 ln x and y 5 x4 6 x4 ln x , so
x2 y 5x y 4 y x2 5 x4 6 x4 ln x 5x x 3 2 x3 ln x 4 x 2 ln x
5 x2 5 x2 6 x2 10 x2 4 x2 ln x 0.
UV
13. Substitution of y erx into 3y 2 y gives the equation 3r erx 2erx , which simplifies
to 3 r 2. Thus r 2/ 3.
14. Substitution of y erx into 4 y y gives the equation 4r 2 erx erx , which simplifies to
IA
4 r 2 1. Thus r .
15. Substitution of y erx into y y 2 y 0 gives the equation r2erx r erx 2 erx 0 ,
_A
which simplifies to r 2 r 2 (r 2)(r 1) 0. Thus r 2 or r 1.
16. Substitution of y erx into 3 y 3 y 4 y 0 gives the equation
3r2erx 3r erx 4erx 0, which simplifies to 3r 2 3r 4 0 . The quadratic formula then
PP
gives the solutions r 3 57 6.
The verifications of the suggested solutions in Problems 17-26 are similar to those in Problems
1-12. We illustrate the determination of the value of C only in some typical cases. However, we
RO
illustrate typical solution curves for each of these problems.
17. C2 18. C 3
Problem 17 Problem 18
4 5
VE
(0, 3)
(0, 2)
D?
y 0 y 0
??
−4 −5
−4 0 4 −5 0 5
x x