Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Solutions Manual — Computational Fluid Dynamics for Mechanical Engineering, 1st Edition — George Qin — ISBN 9780367687298 — Latest Update 2025/2026 — (All Chapters Covered 1–8)

Note
-
Vendu
-
Pages
114
Grade
A+
Publié le
18-11-2025
Écrit en
2025/2026

This verified Solutions Manual for Computational Fluid Dynamics for Mechanical Engineering (1st Edition) by George Qin (ISBN 9780367687298) provides a complete, chapter-by-chapter solution set aligned with the textbook’s official structure. Designed for instructors, course planners, and CFD educators, this resource supports assessment, simulation-based learning, and numerical method instruction. All chapters are covered, and the structure below follows the official Table of Contents in full. The manual begins with Chapter 1: Essence of Fluid Dynamics, followed by Chapter 2: Finite Difference and Finite Volume Methods, Chapter 3: Numerical Schemes, Chapter 4: Numerical Algorithms, Chapter 5: Navier–Stokes Solution Methods, Chapter 6: Unstructured Mesh, Chapter 7: Multiphase Flow, and Chapter 8: Turbulent Flow.

Montrer plus Lire moins
Établissement
Computational Fluid Dynamics For Mechanical By Qin
Cours
Computational Fluid Dynamics for Mechanical by Qin











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Computational Fluid Dynamics for Mechanical by Qin
Cours
Computational Fluid Dynamics for Mechanical by Qin

Infos sur le Document

Publié le
18 novembre 2025
Nombre de pages
114
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

  • george qin cfd solutions

Aperçu du contenu

Computational Fluid Dynamics for

Mechanical Engineering – 1st Edition
ST

SOLUTIONS
UV


MANUAL
IA
_A

George Qin
PP
RO

Comprehensive Solutions Manual for

Instructors and Students
VE

© George Qin. All rights reserved. Reproduction or distribution without permission is
D?

prohibited.




©MedConnoisseur

, Solutions Manual for Computational Fluid
Dynamics for Mechanical Engineering, 1e by
George Qin (All Chapters)
ST

Chapter 1
1. Show that Equation (1.14) can also be written as
UV

𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+𝑢 +𝑣 = 𝜈 ( 2 + 2) −
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Solution
Equation (1.14) is
𝜕𝑢 𝜕(𝑢2 ) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
IA

+ + = 𝜈 ( 2 + 2) − (1.13)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
The left side is
𝜕𝑢 𝜕(𝑢2 ) 𝜕(𝑣𝑢) 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣
_A

+ + = + 2𝑢 +𝑣 +𝑢
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑦
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣 𝜕𝑢 𝜕𝑢 𝜕𝑢
= +𝑢 +𝑣 +𝑢( + ) = +𝑢 +𝑣
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦
since
𝜕𝑢 𝜕𝑣
PP

+ =0
𝜕𝑥 𝜕𝑦
due to the continuity equation.
2. Derive Equation (1.17).
Solution:
RO

From Equation (1.14)
𝜕𝑢 𝜕(𝑢2 ) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) −
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Define
𝑢 𝑣 𝑥𝑖 𝑡𝑈 𝑝
𝑢̃ = , 𝑣̃ = , 𝑥̃𝑖 = , 𝑡̃ = , 𝑝̃ =
𝑈 𝑈 𝐿 𝐿 𝜌𝑈 2
VE

Equation (1.14) becomes
𝑈𝜕𝑢̃ 𝑈 2 𝜕(𝑢̃2 ) 𝑈 2 𝜕(𝑣̃𝑢 ̃) 𝜈𝑈 𝜕 2 𝑢̃ 𝜕 2 𝑢̃ 𝜌𝑈 2 𝜕𝑝̃
+ + = 2 ( 2 + 2) −
𝐿 ̃ 𝐿𝜕𝑥̃ 𝐿𝜕𝑦̃ 𝐿 𝜕𝑥̃ 𝜕𝑦̃ 𝜌𝐿 𝜕𝑥̃
𝑈 𝜕𝑡
Dividing both sides by 𝑈 2 /𝐿, Equation (1.17) follows.
D?

3. Derive a pressure Poisson equation from Equations (1.13) through (1.15):




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?

, 𝜕2𝑝 𝜕2𝑝 𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
+ = 2𝜌 ( − )
𝜕𝑥 2 𝜕𝑦 2 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
Solution:
𝜕𝑢 𝜕𝑣
+ =0 (1.13)
𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕(𝑢2 ) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.14)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
𝜕𝑣 𝜕(𝑢𝑣) 𝜕(𝑣 2 ) 𝜕2𝑣 𝜕2𝑣 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.15)
ST

𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑦
Taking 𝑥-derivative of each term of Equation (1.14) and 𝑦-derivative of each term of Equation (1.15),
then adding them up, we have
𝜕 𝜕𝑢 𝜕𝑣 𝜕 2 (𝑢2 ) 𝜕 2 (𝑣𝑢) 𝜕 2 (𝑣 2 )
( + )+ + 2 +
UV

𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 2 𝜕𝑥𝜕𝑦 𝜕𝑦 2
2 2
𝜕 𝜕 𝜕𝑢 𝜕𝑣 1 𝜕2𝑝 𝜕2𝑝
= 𝜈 ( 2 + 2) ( + ) − ( 2 + 2)
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥 𝜕𝑦
Due to continuity, we have
𝜕2𝑝 𝜕2𝑝 𝜕 2 (𝑢2 ) 𝜕 2 (𝑣𝑢) 𝜕 2 (𝑣 2 )
+ = −𝜌 [ + 2 + ]
IA

𝜕𝑥 2 𝜕𝑦 2 𝜕𝑥 2 𝜕𝑥𝜕𝑦 𝜕𝑦 2
= −2𝜌(𝑢𝑥 𝑢𝑥 + 𝑢𝑢𝑥𝑥 + 𝑢𝑥 𝑣𝑦 + 𝑢𝑣𝑥𝑦 + 𝑢𝑥𝑦 𝑣 + 𝑢𝑦 𝑣𝑥 + 𝑣𝑦 𝑣𝑦 + 𝑣𝑣𝑦𝑦 )
𝜕 𝜕 𝜕𝑢 𝜕𝑣
= −2𝜌 [(𝑢𝑥 + 𝑢 + 𝑣 ) ( + ) + 𝑢𝑦 𝑣𝑥 + 𝑣𝑦 𝑣𝑦 ]
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
_A

𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
= −2𝜌(𝑢𝑦 𝑣𝑥 + 𝑣𝑦 𝑣𝑦 ) = −2𝜌(𝑢𝑦 𝑣𝑥 − 𝑢𝑥 𝑣𝑦 ) = 2𝜌 ( − )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
4. For a 2-D incompressible flow we can define the stream function 𝜙 by requiring
𝜕𝜙 𝜕𝜙
𝑢= ; 𝑣=−
𝜕𝑦 𝜕𝑥
PP

We also can define a flow variable called vorticity
𝜕𝑣 𝜕𝑢
𝜔= −
𝜕𝑥 𝜕𝑦
Show that
𝜕2𝜙 𝜕2𝜙
𝜔 = − ( 2 + 2)
RO

𝜕𝑥 𝜕𝑦
Solution:
𝜕𝑣 𝜕𝑢 𝜕 𝜕𝜙 𝜕 𝜕𝜙 𝜕2𝜙 𝜕2𝜙
𝜔= − = (− ) − ( ) = − ( 2 + 2)
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 𝜕𝑦
VE
D?


Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?

,ST

Chapter 2
UV

𝑑𝜙
1. Develop a second-order accurate finite difference approximation for ( 𝑑𝑥 ) on a non-uniform
𝑖
mesh using information (𝜙 and 𝑥 values) from mesh points 𝑥𝑖−1 , 𝑥𝑖 and 𝑥𝑖+1. Suppose 𝛿𝑥𝑖 =
𝑥𝑖+1 − 𝑥𝑖 = 𝛼𝛿𝑥𝑖−1 = 𝛼(𝑥𝑖 − 𝑥𝑖−1 ).

Solution:
IA

Assume close to the 𝑖 𝑡ℎ point, 𝜙(𝑥) = 𝜙𝑖 + 𝑏(𝑥 − 𝑥𝑖 ) + 𝑐(𝑥 − 𝑥𝑖 )2 + 𝑑(𝑥 − 𝑥𝑖 )3 …
𝑑𝜙 𝑑𝜙
Then 𝑑𝑥 = 𝑏 + 2𝑐(𝑥 − 𝑥𝑖 ) + ⋯ and ( 𝑑𝑥 ) = 𝑏.
𝑖
_A

Now 𝜙𝑖+1 = 𝜙(𝑥𝑖+1 ) = 𝜙𝑖 + 𝑏(𝑥𝑖+1 − 𝑥𝑖 ) + 𝑐(𝑥𝑖+1 − 𝑥𝑖 )2 + ⋯ = 𝜙𝑖 + 𝑏Δ𝑥𝑖 + 𝑐Δ𝑥𝑖2 + 𝑑Δ𝑥𝑖3 …
2 3
And 𝜙𝑖−1 = 𝜙(𝑥𝑖−1 ) = 𝜙𝑖 + 𝑏(𝑥𝑖−1 − 𝑥𝑖 ) + 𝑐(𝑥𝑖−1 − 𝑥𝑖 )2 + ⋯ = 𝜙𝑖 − 𝑏Δ𝑥𝑖−1 + 𝑐Δ𝑥𝑖−1 − 𝑑Δ𝑥𝑖−1 …
2
So Δ𝑥𝑖−1 𝜙𝑖+1 − Δ𝑥𝑖2 𝜙𝑖−1 = (Δ𝑥𝑖−1
2
− Δ𝑥𝑖2 )𝜙𝑖 + 𝑏Δ𝑥𝑖 Δ𝑥𝑖−1 (Δ𝑥𝑖 + Δ𝑥𝑖−1 ) + 𝑑Δ𝑥𝑖2 Δ𝑥𝑖−1
2
(Δ𝑥𝑖 +
PP

Δ𝑥𝑖−1 ) + ⋯
2
Δ𝑥𝑖−1 𝜙𝑖+1 −Δ𝑥𝑖2 𝜙𝑖−1 −(Δ𝑥𝑖−1
2
−Δ𝑥𝑖2 )𝜙𝑖
And 𝑏 = Δ𝑥𝑖 Δ𝑥𝑖−1 (Δ𝑥𝑖 +Δ𝑥𝑖−1 )
− 𝑑Δ𝑥𝑖 Δ𝑥𝑖−1 + ⋯

𝑑𝜙
A 2nd order finite difference for ( 𝑑𝑥 ) is therefore
RO

𝑖
2
𝑑𝜙 Δ𝑥𝑖−1 𝜙𝑖+1 − Δ𝑥𝑖2 𝜙𝑖−1 − (Δ𝑥𝑖−1
2
− Δ𝑥𝑖2 )𝜙𝑖 𝜙𝑖+1 + (α2 − 1)𝜙𝑖 − α2 𝜙𝑖−1
( ) =𝑏≈ =
𝑑𝑥 𝑖 Δ𝑥𝑖 Δ𝑥𝑖−1 (Δ𝑥𝑖 + Δ𝑥𝑖−1 ) α(α + 1)Δ𝑥𝑖−1

2. Use the scheme you developed for problem 1 to evaluate the derivative of 𝜙(𝑥) =
sin(𝑥 − 𝑥𝑖 + 1) at point 𝑖. Suppose Δ𝑥𝑖−1 = 0.02 and Δ𝑥𝑖 = 0.01. Compare your
VE

numerical result with the exact solution, which is cos(1). Then halve both Δ𝑥𝑖−1 and Δ𝑥𝑖 ,
and redo the calculation. Is the scheme truly second-order accurate?
Solution:
clear; clc;
dxi = 0.01; dxim1 = 0.02; alpha = dxi/dxim1;
D?

for iter = 1 : 2
x = [-dxim1,0,dxi];
phi = sin(x+1);




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?
$19.99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
MedConnoisseur West Virgina University
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
2536
Membre depuis
3 année
Nombre de followers
1735
Documents
2332
Dernière vente
1 jours de cela
MedConnoisseur Study Hub – Verified Solutions, Test Banks & Guides for Medical, Nursing, Business, Engineering, Accounting, Chemistry, Biology & Other Subjects

Welcome to Your Ultimate Study Resource Hub! Looking for high-quality, reliable, and exam-ready study materials? You’re in the right place. Our shop specializes in original publisher content, including solutions manuals, test banks, and comprehensive study guides that are ideal for university and college students across various subjects. Every document is in PDF format and available for instant download—no waiting, no hassle. That means you get immediate access to top-tier academic resources the moment you need them, whether you're cramming for an exam or studying ahead. These materials are especially effective for exam preparation, offering step-by-step solutions, real test formats, and well-organized study guides that align with your coursework and textbooks. Whether you're a visual learner, a problem-solver, or need practice questions—there’s something for every study style. Love what you get? Share it! Help your mates and classmates succeed too by referring them to our shop. More learners, more success for all.

Lire la suite Lire moins
4.0

194 revues

5
102
4
38
3
25
2
9
1
20

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions