100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Quantum Physics by Griffiths (part 1)

Rating
3.5
(6)
Sold
37
Pages
39
Uploaded on
17-07-2014
Written in
2013/2014

Summary study book Introduction to Quantum Mechanics of Griffiths (hoofdstuk 1 t/m 5) - ISBN: 9781292024080, Edition: 2e, Year of publication: 2014

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 1 t/m 5
Uploaded on
July 17, 2014
Number of pages
39
Written in
2013/2014
Type
Summary

Content preview

Samenvatting Quantum Physics I
From: Introduction to Quantum Mechanic s, by D.J. Griffiths

Door: Marenthe Hopma




07-11-2013, 2𝑛𝑑 edition “Introduction to Quantum Mechanics”

,Inhoud
1. The Wave Function ............................................................................................................................. 3
2. Time-Independent Schrödinger Equation .......................................................................................... 5
2.1 Stationary States .......................................................................................................................... 5
2.2 The Infinite Square Well ............................................................................................................... 6
2.3 The Harmonic Oscillator ............................................................................................................... 7
2.3.1 Algebraic Method .................................................................................................................. 7
2.3.2 Analytic Method .................................................................................................................... 8
2.4 The Free Particle ........................................................................................................................... 9
2.5 The Delta-Function Potential ...................................................................................................... 10
2.5.1 Bound States and Scattering States ..................................................................................... 10
2.5.2 The Delta-Function Well ...................................................................................................... 10
2.6 The Finite Square Well................................................................................................................ 11
3. Formalism......................................................................................................................................... 13
3.1 Hilbert Space .............................................................................................................................. 13
3.2 Observables ................................................................................................................................ 13
3.2.1 Hermitian Operators............................................................................................................ 13
3.2.2 Determinate States .............................................................................................................. 14
3.3 Eigenfunctions of a Hermitian Operator ..................................................................................... 14
3.3.1 Discrete Spectra .................................................................................................................. 14
3.3.2 Continuous Spectra ............................................................................................................. 14
3.4 Generalized Statistical Interpretation......................................................................................... 15
3.5 The Uncertainty Principle ........................................................................................................... 15
3.5.1 Proof of the Generalized Uncertainty Principle ................................................................... 15
3.5.2 The Minimum-Uncertainty Wave Packet ............................................................................. 16
3.5.3 The Energy-Time Uncertainty Principle ............................................................................... 16
3.6 Dirac Notation ............................................................................................................................ 16
4. Quantum Mechanics in Three Dimensions ....................................................................................... 18
4.1 Schrödinger Equation in Spherical Coordinates.......................................................................... 18
4.1.1 Seperation of Variables ....................................................................................................... 18
4.1.2 The Angular Equation .......................................................................................................... 18
4.1.3 The Radial Equation ............................................................................................................. 20
4.2 The Hydrogen Atom ................................................................................................................... 21
4.2.1 The Radial Wave Function ................................................................................................... 21


1

, 4.2.2 The Spectrum of Hydrogen .................................................................................................. 23
4.3 Angular Momentum ................................................................................................................... 24
4.3.1 Eigenvalues .......................................................................................................................... 24
4.3.2 Eigenfunctions ..................................................................................................................... 25
4.4 Spin............................................................................................................................................. 26
4.4.1 Spin ½ .................................................................................................................................. 26
4.4.2 Electron in a Magnetic Field ................................................................................................ 27
4.4.3 Addition of Angular Momenta ............................................................................................. 27
5. Identical Particles ............................................................................................................................. 29
5.1 Two-Particle Systems ................................................................................................................. 29
5.1.1 Bosons and Fermions........................................................................................................... 29
5.1.2Exchange Forces ................................................................................................................... 29
5.2 Atoms ......................................................................................................................................... 30
5.2.1 Helium ................................................................................................................................. 30
5.2.2 The Periodic Table ............................................................................................................... 31
5.3 Solids .......................................................................................................................................... 32
5.3.1 The Free Electron Gas .......................................................................................................... 32
5.3.2 Band Structure ..................................................................................................................... 33
5.4 Quantum Statistical Mechanics .................................................................................................. 34
5.4.1 An Example .......................................................................................................................... 34
5.4.2 The General Case ................................................................................................................. 35
5.4.3 The Most Probable Configuration ....................................................................................... 35
5.4.4 Physical Significance of 𝜶 and 𝜷 .......................................................................................... 36
5.4.5 The Blackbody Spectrum ..................................................................................................... 38




2

, 1. The Wave Function

To describe the position of a particle at any given time, we use a wave function, called the
Schrödinger Equation:
𝜕𝜓 ℏ2 𝜕 2 𝜓
𝑖ℏ =− + 𝑉𝜓
𝜕𝑡 2𝑚 𝜕𝑥 2

Where ℏ = = 1.054572 ∙ 10−34 𝐽𝑠
2𝜋
We define the probability of finding a particle between a and b, at time t as:

𝑏
𝑃 = ∫ |𝜓(𝑥, 𝑡)|2 𝑑𝑥
𝑎

Out if this equation, it follows that the integral |𝜓|2 must be 1 (the particle has to be somewhere).

∫ |𝜓(𝑥, 𝑡)|2 𝑑𝑥 = 1
−∞

So now if 𝜓(𝑥, 𝑡) is a solution to our Schrödinger Equation, then so is 𝐴𝜓(𝑥, 𝑡), where 𝐴 ∈ 𝕔. We can
find a by solving the square integral of 𝐴𝜓(𝑥, 𝑡). This is called normalizing the wave function.
For a particle in state 𝜓, the expectation value of x is given by the equation:
+∞
〈𝑥 〉 = ∫ 𝑥|𝜓(𝑥, 𝑡)|2 𝑑𝑥
−∞

Now as time goes on, 〈𝑥 〉 will change (because of the time dependence of 𝜓), and we might be
interested in knowing how fast it moves. We find that:

𝑑 〈𝑥 〉 𝜕 𝑖ℏ 𝜕 𝜕𝜓 𝜕𝜓 ∗
= ∫ 𝑥 |𝜓|2 𝑑𝑥 = ∫ 𝑥 (𝜓 ∗ − 𝜓) 𝑑𝑥
𝑑𝑡 𝜕𝑡 2𝑚 𝜕𝑥 𝜕𝑥 𝜕𝑥
𝜕𝑥
We can simplify this expression by using integration-by-parts. = 1 and because 𝜓 goes to zero at
𝜕𝑥
(±∞), we can throw away the ground term. Using now another integration-by-parts:

𝑑 〈𝑥 〉 𝑖ℏ 𝜕𝜓
=− ∫𝜓 ∗ 𝑑𝑥 = 〈𝑣 〉
𝑑𝑡 2𝑚 𝜕𝑥

This equation tells u show to calculate 〈𝑣 〉 directly from 𝜓. However, it is more customary to work
with momentum (p = mv), rather than velocity:

𝑑 〈𝑥 〉 𝜕𝜓
〈𝑝 〉 = 𝑚 = −𝑖ℏ ∫ (𝜓 ∗ ) 𝑑𝑥
𝑑𝑡 𝜕𝑥

The expressions obtained for 〈𝑥 〉 and 〈𝑝〉 now are:

〈𝑥 〉 = ∫ 𝜓 ∗ (𝑥)𝜓𝑑𝑥
ℏ 𝜕
〈𝑝 〉 = ∫ 𝜓 ∗ ( ) 𝜓𝑑𝑥
𝑖 𝜕𝑥




3
$3.61
Get access to the full document:
Purchased by 37 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 6 reviews
2 year ago

3 year ago

The formulas contain clear calculation errors.

6 year ago

Stand off. And then some minor mistakes but for the rest it is a very good summary of a difficult subject

6 year ago

6 year ago

7 year ago

3.5

6 reviews

5
1
4
2
3
2
2
1
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
mhopma Rijksuniversiteit Groningen
Follow You need to be logged in order to follow users or courses
Sold
37
Member since
11 year
Number of followers
36
Documents
2
Last sold
1 year ago

3.5

6 reviews

5
1
4
2
3
2
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions