Cognitive Neuropsychology summary: week 4-5
Zenna Beek
October 2025
Contents
1 Week 4 - Cognitive Control 2
1.1 Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Chapter 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 12.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 12.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 12.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.4 12.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.5 12.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.6 12.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.7 12.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Week 5 - Language 18
2.1 Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 11.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 11.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 11.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 11.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.5 11.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.6 11.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.7 11.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1
,1 Week 4 - Cognitive Control
1.1 Lecture 1
Cognitive control: allows us to override automatic thought and behaviour and allows information processing
and behavior to vary adaptively from moment to moment depending on current goals, rather than remaining
rigid and inflexible
Goal oriented action: knowledge of a causal relationship between action and reward (outcome)+ assessment
of this reward
Habit: stimulus driven responses, no longer ‘under control’ of an outcome
The idea, and even evidence, that the frontal part of the brain is important for ‘thinking’ is very old.
What controls Cognitive Control?
• Ability is correlated to size of frontal cortex
– which is driven by increase in white matter
– it’s all about networks
• Ontogeny repeats phylogeny
– frontal cortex develops last
– cognitive control ( / executive function / planning etc) develop last
Four main subdivisions of the Prefrontal Cortex (PFC)
1. Lateral prefrontal (LFPC)
2. Frontal pole (FP)
3. Ventro-medial / orbitofrontal
4. Medial frontal (MFC) / Anterior Cingulate Cortex ACC
• 1-3: goal oriented behaviour: working memory, planning, initiate/inhibit/shift
• 4: monitoring behaviour
Goal-directed action and Frontal Cortex lesions
• Disruption of working memory
• Deficits in complex planning (e.g. Buying groceries for dinner)
• Response perseveration
– continue response when the context has changed
– loss of inhibitory control
– related to habitual stimulus/response behaviour
Cognitive control deficit
• No perceptual or motor disabilities, no amnesia
• Problems with planning and goal-directed behaviour
– very stimulus driven responses
– Intelligent but cannot get life organized
• Usually some insight, but don’t seem to care much
– ‘I lost my ego’
2
, Figure 1: Hebb (1949) on maintenance, selectivity and attention
Figure 2: Working Memory model - Baddeley & Hitch (2003)
Lateral PFC lesion (patients and monkeys):
• Intact:
– associative learning (LTM + SR)
– recognition memory (LTM)
• Impaired working memory:
– maintenance
– manipulation (DNTS w/ short delay)
Figure 3: Experiment lateral PFC lesion
3
, Figure 4: LPFC coding of what and where
Dissociation of ‘what’ and ‘where’ information storage demands in LPFC
Alternative hypothesis: Task demands
• prefrontal activity reflects specificity in representation of task goals → But goal does not necessarily equal
content
• interactions with other cortical areas that are specialised in processing specific types of information
• Testing the task demand hypothesis: Faces, load and fusiform gyrus
Figure 5: BOLD response in PFC increased with load
Figure 6: Encoding vs. maintaining
– Activity in LPFC: maintaining task goal
– Response in FFA: encoding and recognition phase
4
Zenna Beek
October 2025
Contents
1 Week 4 - Cognitive Control 2
1.1 Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Chapter 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 12.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 12.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 12.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.4 12.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.5 12.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.6 12.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.7 12.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Week 5 - Language 18
2.1 Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 11.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 11.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 11.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 11.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.5 11.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.6 11.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.7 11.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1
,1 Week 4 - Cognitive Control
1.1 Lecture 1
Cognitive control: allows us to override automatic thought and behaviour and allows information processing
and behavior to vary adaptively from moment to moment depending on current goals, rather than remaining
rigid and inflexible
Goal oriented action: knowledge of a causal relationship between action and reward (outcome)+ assessment
of this reward
Habit: stimulus driven responses, no longer ‘under control’ of an outcome
The idea, and even evidence, that the frontal part of the brain is important for ‘thinking’ is very old.
What controls Cognitive Control?
• Ability is correlated to size of frontal cortex
– which is driven by increase in white matter
– it’s all about networks
• Ontogeny repeats phylogeny
– frontal cortex develops last
– cognitive control ( / executive function / planning etc) develop last
Four main subdivisions of the Prefrontal Cortex (PFC)
1. Lateral prefrontal (LFPC)
2. Frontal pole (FP)
3. Ventro-medial / orbitofrontal
4. Medial frontal (MFC) / Anterior Cingulate Cortex ACC
• 1-3: goal oriented behaviour: working memory, planning, initiate/inhibit/shift
• 4: monitoring behaviour
Goal-directed action and Frontal Cortex lesions
• Disruption of working memory
• Deficits in complex planning (e.g. Buying groceries for dinner)
• Response perseveration
– continue response when the context has changed
– loss of inhibitory control
– related to habitual stimulus/response behaviour
Cognitive control deficit
• No perceptual or motor disabilities, no amnesia
• Problems with planning and goal-directed behaviour
– very stimulus driven responses
– Intelligent but cannot get life organized
• Usually some insight, but don’t seem to care much
– ‘I lost my ego’
2
, Figure 1: Hebb (1949) on maintenance, selectivity and attention
Figure 2: Working Memory model - Baddeley & Hitch (2003)
Lateral PFC lesion (patients and monkeys):
• Intact:
– associative learning (LTM + SR)
– recognition memory (LTM)
• Impaired working memory:
– maintenance
– manipulation (DNTS w/ short delay)
Figure 3: Experiment lateral PFC lesion
3
, Figure 4: LPFC coding of what and where
Dissociation of ‘what’ and ‘where’ information storage demands in LPFC
Alternative hypothesis: Task demands
• prefrontal activity reflects specificity in representation of task goals → But goal does not necessarily equal
content
• interactions with other cortical areas that are specialised in processing specific types of information
• Testing the task demand hypothesis: Faces, load and fusiform gyrus
Figure 5: BOLD response in PFC increased with load
Figure 6: Encoding vs. maintaining
– Activity in LPFC: maintaining task goal
– Response in FFA: encoding and recognition phase
4