100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Rules and Techniques for Differentiation

Rating
-
Sold
-
Pages
46
Uploaded on
24-01-2021
Written in
2020/2021

These notes explain in an easily understandable manner, every single rule and technique in order to master the process of differentiating mathematical functions. To a certain extent, Precalculus isn't even needed to comprehend these notes, as every single method is fully explained, and no-nonsense is included, alongside with solved exercises showing the process for each individual method of differentiation, as well as the individual proof for each one. If you want to excel at Calculus I, this is absolutely what you are looking for.

Show more Read less
Institution
Course













Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
Study
12
Course
School year
3

Document information

Uploaded on
January 24, 2021
Number of pages
46
Written in
2020/2021
Type
Summary

Subjects

Content preview

Rules and Techniques for Differentiation
Anibal Garcia
August 7 2020



Contents

I Differentiation 4
1 Simple Rules of Differentiation 4

2 The Power Rule 5
2.1 The Power Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Proof of The Power Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Solved Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Linearity of the Derivative 7

4 The Sum Rule 8
4.1 The Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Proof of the Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 The Product Rule 9
5.1 The Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Proof of the Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 Solved Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 The Quotient Rule 12
6.1 The Quotient Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Proof of the Quotient Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Solved Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 The Chain Rule 14
7.1 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2 Proof of the Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.3 Solved Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Derivatives of Exponential Functions 21
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 A function with its own derivative, f (x) = ex . . . . . . . . . . . . . . . . 22
8.3 The derivative of ef (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1

, 8.3.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.3.2 Solved Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.4 The derivative of ax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.4.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.5 The derivative of af (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.5.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.5.2 Solved Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Derivatives of Logarithmic Functions 29
9.1 The derivative of ln x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2 The derivative of ln f (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2.2 Solved Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.3 The Derivative of loga x . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.3.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.4 The Derivative of loga f (x) . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.4.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.4.2 Solved Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10 Derivatives of Trigonometric Functions 35
10.1 The Derivative of sin x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.2 The Derivative of cos x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.3 The Derivative of tan x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.3.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.4 The Derivative of sin[f (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.4.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.5 The Derivative of cos[f (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.6 The Derivative of tan[f (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.7 Solved Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.8 The Derivative of csc x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.8.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.9 The Derivative of sec x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.9.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.10The Derivative of cot x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.10.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.11Derivative of csc[f (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.12Derivative of sec[f (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.13Derivative of cot[f (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11 Derivatives of Inverse Trigonometric Functions 42
11.1 Derivative of arcsin x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.1.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.2 Derivative of arccos x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.3 Derivative of arctan x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.4 Derivative of arcsin[f (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.4.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.5 Derivative of arccos[f (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.6 Derivative of arctan[f (x)] . . . . . . . . . . . . . . . . . . . . . . . . . . 44


2

,12 Second and Higher Derivatives 46




3

,Part I
Differentiation
1 Simple Rules of Differentiation

Differentiation is the process of finding a derivative or gradient function.
Given a function f (x) we obtain f 0 (x) by differentiating with respect to the variable x.

There are a number of rules associated with differentiation. These rules can be used to
differentiate more complicated functions without having to use first principles.

We can summarize the following rules:

f (x) f 0 (x) Name of Rule
c (a constant) 0 Differentiating a Constant
xn nxn−1 Differentianting xn / Power Rule
cu(x) cu0 (x) Constant times a function
u(x) + v(x) u0 (x) + v 0 (x) Addition Rule


The last two rules can be proved with the first principles of differentiation:




4

,2 The Power Rule
2.1 The Power Rule
We start with the derivative of a power function, f (x) = xn . Here n is a number of
any kind: integer, rational, positive, negative, even irrational, as in xπ . The formula to
differentiate xn :
d n
x = nxn−1
dx



2.2 Proof of The Power Rule
We can prove this with the definition of the derivative and the binomial expansion.
Find the derivative of f (x) = xn :

First, we know the definition of the derivative is:
f (x + h) − f (x)
lim
h→0 h
We apply this to xn :
(x + h)n − xn
lim
h→0 h
We know that the binomial expansion for (x + h)n is:
n  
n
X n n−r r
(x + h) = x h
r=0
r
n          
X n n−r r n n n n−1 n n−2 2 n n
x h = x + x h+ x h + ... + h
r=0
r 0 1 2 n
We introduce this expansion into the limit:
n
x + n1 xn−1 h + n2 xn−2 h2 + ... + n
 n    n
0 n
h − xn
lim
h→0 h
We cancel out terms:
n  n n n
n
  n−1  n−2 2  n 
n
−x
lim 0x + 1
x h+ 2
x h + ... + n
h
h→0 h
n n n
  
1
xn−1 h + 2
xn−2 h2 + ... + n
hn
lim
h→0 h
We then cancel h:
h hn−1
n n n
 n−1
 2
n−2 
 >
n
1
x h+
 2
x h + ... + n
h

lim
h→0 h

     
n n−1 n n−2 n n−1
lim x + x h + ... + h
h→0 1 2 n

5

, We could then factorize:
      !
n n−1 n n−2 n n−1
lim x +h x + ... + 1
h→0 1 2 n

We can then evaluate the limit:

     :!0
   
n n−1 n n−2  n n−1
 n n−1
lim x +h x +
... + 1 = x
h→0 1 2  n 1
 


∴ f 0 (x) = nxn−1

2.3 Solved Exercises
1. Find the derivatives of the given functions.

(a) x100 (d) xπ
3
(b) x−100 (e) x 4
1 √
(c) x5
(f) 3 x

(a)
d 100
x = 100x99
dx
(b)
d −100
x = −100x−101
dx
(c)
d 1 d −5
≡ x = −5x−6
dx x5 dx
(d)
d π
x = πxπ−1
dx
(e)
d 3 3 3 3 5
x 4 = x( 4 −1) = x− 4
dx 4 4
(f)
d √ d 1 3 1
3 x≡ 3x 2 = x− 2
dx dx 2




6
$18.79
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
anibal
5.0
(2)

Get to know the seller

Seller avatar
anibal Massachussets Institute of Technology
Follow You need to be logged in order to follow users or courses
Sold
23
Member since
4 year
Number of followers
14
Documents
0
Last sold
2 year ago

5.0

2 reviews

5
2
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions