100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

PDF***CS7643 – Deep Learning Quiz 4: Comprehensive Actual Exam (100 Questions with Answers and Rationales)

Beoordeling
-
Verkocht
-
Pagina's
26
Cijfer
A+
Geüpload op
02-11-2025
Geschreven in
2025/2026

Excel in CS7643: Deep Learning with this Quiz 4 comprehensive exam resource, designed specifically for the Georgia Institute of Technology OMSCS Program. This set includes 100 verified, exam-style questions with accurate answers and detailed rationales to help you master both theoretical and applied aspects of deep learning. Developed to align with Georgia Tech’s CS7643 curriculum, this guide emphasizes real exam-level difficulty and conceptual depth — perfect for reinforcing high-level understanding of neural architectures and optimization techniques. Topics Covered: Graph Neural Networks (GNNs) Attention Mechanisms & Transformers Embedding Techniques & Word2Vec Autoencoders & Variational Autoencoders (VAE) Generative Adversarial Networks (GANs) Transfer Learning & Fine-Tuning Evaluation Metrics & Model Interpretability

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
2 november 2025
Aantal pagina's
26
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Voorbeeld van de inhoud

CS7643 – Deep Learning Quiz 4: Comprehensive
Actual Exam (100 Questions with Answers and
Rationales)


Overview:
This exam is a full-length, 100-question practice test designed to evaluate a student’s
understanding of graduate-level deep learning concepts. It covers core topics including:

 Neural Network Architectures: Feedforward (MLP), Convolutional (CNN), Recurrent
(RNN), LSTM, and GRU networks.
 Activation Functions: ReLU, Leaky ReLU, Sigmoid, Tanh, and Softmax, including
their properties and derivatives.
 Optimization Methods: SGD, Momentum, RMSProp, Adam, learning rate adjustments,
and adaptive optimization techniques.
 Regularization and Stabilization: Dropout, L1/L2 weight penalties, Batch
Normalization, weight initialization (Xavier/He), and gradient clipping.
 Gradient Challenges: Vanishing and exploding gradients, and techniques such as
residual connections to address them.
 Loss Functions: Cross-entropy, MSE, and Hinge loss for classification and regression
tasks.
 Practical Applications: Forward/backward pass calculations, parameter counting, and
PyTorch implementation examples.

Each question includes answers in bold and rationales, making this practice exam an excellent
tool for reviewing concepts, identifying knowledge gaps, and preparing for real assessments in
CS7643 Deep Learning.




1. Which of the following is NOT a property of ReLU?
A. Non-linear
B. Unbounded above
C. Smooth and differentiable everywhere
D. Encourages sparsity

Rationale: ReLU is non-linear and unbounded above; it zeros out negatives
(sparse activations) but is not differentiable at 0.

,2. In batch normalization, the γ and β parameters are used to:
A. Normalize inputs to zero mean and unit variance
B. Scale and shift normalized inputs
C. Reduce overfitting directly
D. Speed up gradient computation

Rationale: γ and β allow the network to restore representation flexibility after
normalization.



3. Adam optimizer combines:
A. SGD and momentum
B. RMSProp only
C. Momentum and adaptive learning rates
D. L2 regularization

Rationale: Adam uses first-moment (momentum) and second-moment (RMSProp-
like) estimates.



4. Dropout primarily helps:
A. Accelerate training
B. Reduce overfitting
C. Improve ReLU performance
D. Initialize weights

Rationale: Randomly zeroes activations during training to prevent co-adaptation.



5. The standard loss for multi-class classification is:
A. MSE
B. Cross-entropy
C. Hinge loss
D. KL divergence

Rationale: Cross-entropy compares predicted probabilities with one-hot labels.

, 6. Vanishing gradients in RNNs lead to:
A. Faster training
B. Inability to learn long-term dependencies
C. Overfitting
D. Weight explosion

Rationale: Multiplying many small derivatives reduces gradient magnitude over
time.



7. Key advantage of LSTM over vanilla RNN:
A. Faster
B. Fewer parameters
C. Capture long-term dependencies
D. Simpler architecture

Rationale: LSTM gates preserve gradients and enable learning across long
sequences.



8. Sigmoid activation is used in:
A. Hidden layers of CNNs
B. ReLU replacement
C. Binary classification output
D. Softmax replacement

Rationale: Sigmoid maps output to (0,1) for probability interpretation.



9. Xavier initialization aims to:
A. Set all weights to zero
B. Keep activations’ variance stable across layers
C. Prevent overfitting
D. Speed up ReLU convergence

Rationale: Balances signal variance for both forward and backward passes.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
studyguidepro NURSING
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
51
Lid sinds
3 maanden
Aantal volgers
3
Documenten
1187
Laatst verkocht
4 uur geleden
verified exams

Updated exams .Actual tests 100% verified.ATI,NURSING,PMHNP,TNCC,USMLE,ACLS,WGU AND ALL EXAMS guaranteed success.Here, you will find everything you need in NURSING EXAMS AND TESTBANKS.Contact us, to fetch it for you in minutes if we do not have it in this shop.BUY WITHOUT DOUBT!!!!Always leave a review after purchasing any document so as to make sure our customers are 100% satisfied. **Ace Your Exams with Confidence!**

3.9

14 beoordelingen

5
8
4
1
3
2
2
1
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen