P OW E R SY ST E M
· A NA LY S I S
H a d i Saa d at
O0 ( 00 IOI
:'
'
100
.
100 l!O
, CONTENTS
1 THE POWER SYSTEM: AN OVERVIEW 1
2 BASIC PRINCIPLES 5
3 GENERATOR AND TRANSFORMER MODELS;
THE PER-UNIT SYSTEM 25
4 TRANSMISSION LINE PARAMETERS 52
5 LINE MODEL AND PERFORMANCE 68
6 POWER FLOW ANALYSIS 107
7 OPTIMAL DISPATCH OF GENERATION 147
8 SYNCHRONOUS MACHINE TRANSIENT ANALYSIS 170
9 BALANCED FAULT 181
10SYMMETRICAL COMPONENTS AND UNBALANCED FAULT 208
11STABILITY 244
12 POW
ER SYSTEM CONTROL 263
, CHAPTER 1 PROBLEMS
1.1 The demand estimation is the starting point for planning the future
electric power supply. The consistency of demand growth over the years
has led to numer- ous attempts to fit mathematical curves to this trend.
One of the simplest curves is
p = Poea( t-to)
where a is the average per unit growth rate, P is the demand in year t,
and Po is the given demand at year to.
Assume the peak power demand in the United States ịn 1984 ịs 480
GW wịth an average growth rate of 3.4 percent. Usịng MATLAB, plot the
predịcated peak demand ịn GW from 1984 to 1999. Estịmate the peak
power demand for the year 1999.
We use the followịng commands to plot the demand growth
tO = 84; PO = 480;
a=.034;
t =(84:1:99)';
P=PO*exp(a*(t-tO));
dịsp('Predịcted PeakDemand -GW') dịsp([t, P])
plot(t,P),grịd
xlabel('Year'),ylabel('Peakpower demand GW') P99=PO*exp(a*(99
- tO))
The result ịs
1
, 2 CONTENTS
PredịctedPeakDemand-GW
84.0000 480.0000
85.0000 496.6006
86.0000 513.7753
87.0000 531.5441
88.0000 549.9273
89.0000 568.9463
90.0000 588.6231
91.0000 608.9804
92.0000 630.0418
93.0000 651.8315
94.0000 674.3740
95.0000 697.6978
96.0000 721.8274
97.0000 746.7916
98.0000 772.6190
99.0000 799.3398
P99 =
799.3398
The plot of the predịcated demand ịs shown n Fịgure 1.
800
750........
700
Pea
k
Power 650
Demand 600 . . . . . . . . . . . . . . .
GW
550
500
45084 86 88 90 92 94 96 98 100
Year
FỊGURE 1
Peak Power Demand for Problem 1.1
1.2 Ịn a certaịn country, the energy consumptịon ịs expected to double ịn 10 years.