100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Stochastic Processes With R An Introduction 1st edition by Olga Korosteleva

Rating
-
Sold
-
Pages
41
Grade
A+
Uploaded on
30-10-2025
Written in
2025/2026

Solution Manual for Stochastic Processes With R An Introduction 1st edition by Olga Korosteleva

Institution
Stochastic Processes
Course
Stochastic Processes











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Stochastic Processes
Course
Stochastic Processes

Document information

Uploaded on
October 30, 2025
Number of pages
41
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

ALL 9 CHAPTER COVERED




SOLUTIONS MANUAL

, TABLE OF CONTENTS
CHAPTER 1 ……………………………………………………………………………………. 3
CHAPTER 2 ……………………………………………………………………………………. 31
CHAPTER 3 ……………………………………………………………………………………. 41
CHAPTER 4 ……………………………………………………………………………………. 48
CHAPTER 5 ……………………………………………………………………………………. 60
CHAPTER 6 ……………………………………………………………………………………. 67
CHAPTER 7 ……………………………………………………………………………………. 74
CHAPTER 8 ……………………………………………………………………………………. 81
CHAPTER 9 ……………………………………………………………………………………. 87




2

, CHAPTER 1
0.3 0.4 0.3
EXERCISE 1.1. For a Markov chain with a one-step transition probability matrix � 0.2 0.3 0.5 �
0.8 0.1 0.1
we compute:

(a) 𝑃𝑃(𝑋𝑋3 = 2 |𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) = 𝑃𝑃(𝑋𝑋3 = 2 | 𝑋𝑋2 = 3) (by the Markov property)
= 𝑃𝑃32 = 0.1.
(b) 𝑃𝑃(𝑋𝑋4 = 3 |𝑋𝑋0 = 2, 𝑋𝑋3 = 1) = 𝑃𝑃(𝑋𝑋4 = 3 | 𝑋𝑋3 = 1) (by the Markov property)
= 𝑃𝑃13 = 0.3.
(c) 𝑃𝑃(𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3, 𝑋𝑋3 = 1) = 𝑃𝑃(𝑋𝑋3 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋2 = 3) 𝑃𝑃(𝑋𝑋2 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃(𝑋𝑋3 = 1 | 𝑋𝑋2 = 3) 𝑃𝑃(𝑋𝑋2 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by the Markov property)

= 𝑃𝑃31 𝑃𝑃23 𝑃𝑃12 𝑃𝑃(𝑋𝑋0 = 1) = (0.8)(0.5)(0.4)(1) = 0.16.
(d) We first compute the two-step transition probability matrix. We obtain

0.3 0.4 0.3 0.3 0.4 0.3 0.41 0.27 0.32
𝐏𝐏(2) = � 0.2 0.3 0.5 � � 0.2 0.3 0.5 � = � 0.52 0.22 0.26�.
Now we write 0.8 0.1 0.1 0.8 0.1 0.1 0.34 0.36 0.30
𝑃𝑃(𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3, 𝑋𝑋5 = 1) = 𝑃𝑃(𝑋𝑋5 = 1 | 𝑋𝑋0 = 1, 𝑋𝑋1 = 2, 𝑋𝑋3 = 3) 𝑃𝑃(𝑋𝑋3 = 3 |𝑋𝑋0 = 1,
𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by conditioning)
= 𝑃𝑃(𝑋𝑋5 = 1 | 𝑋𝑋3 = 3) 𝑃𝑃(𝑋𝑋3 = 3 | 𝑋𝑋1 = 2) 𝑃𝑃(𝑋𝑋1 = 2 | 𝑋𝑋0 = 1) 𝑃𝑃(𝑋𝑋0 = 1) (by the Markov property)
(2) (2) 𝑃𝑃(𝑋𝑋 = 1) = (0.34)(0.26)(0.4)(1) = 0.03536.
𝑃𝑃

= 𝑃𝑃31 𝑃𝑃23 12 0

EXERCISE 1.2. (a) We plot a diagram of the Markov chain.

#specifying transition probability matrix
tm<- matrix(c(1, 0, 0, 0, 0, 0.5, 0, 0, 0, 0.5, 0.2, 0, 0, 0, 0.8,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0), nrow=5, ncol=5, byrow=TRUE)

#transposing transition probability matrix
tm.tr<- t(tm)

#plotting diagram
library(diagram)
plotmat(tm.tr, arr.length=0.25, arr.width=0.1, box.col="light blue",
box.lwd=1, box.prop=0.5, box.size=0.12, box.type="circle", cex.txt=0.8,
lwd=1, self.cex=0.3, self.shiftx=0.01, self.shifty=0.09)




3

, State s2 sis sreflective. sThe schain sleaves sthat sstate sin sone sstep. sTherefore, sit sforms sa sseparate
stransient s class sthat shas san sinfinite speriod.


Finally, sstates s3, s4, sand s5 scommunicate sand sthus sbelong sto sthe ssame sclass. sThe schain scan
sreturn sto s either sstate sin sthis sclass sin s3, s6, s9, setc. ssteps, sthus sthe speriod sis sequal sto s3. sSince
sthere sis sa spositive s probability sto sleave sthis sclass, sit sis stransient.



The sR soutput ssupports sthese sfindings.

#creating sMarkov schain sobject
slibrary(markovchain)
mc<- snew("markovchain", stransitionMatrix=tm,states=c("1", s"2", s"3", s"4", s"5"))

#computing sMarkov schain scharacteristics
srecurrentClasses(mc)

"1"

transientClasses(mc)

"2"

"3" s"4" s"5"

absorbingStates(mc)

"1"

(c) Below swe ssimulate sthree strajectories sof sthe schain sthat sstart sat sa srandomly schosen sstate.
4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Testbankx Walden University
View profile
Follow You need to be logged in order to follow users or courses
Sold
44
Member since
1 year
Number of followers
0
Documents
785
Last sold
3 days ago
Test Banks and Solution Manuals

At my shop, I specialize in offering high-quality Test Banks that are tailored to help students prepare effectively for exams. Each Test Bank is carefully selected and updated to ensure it aligns with the latest textbook editions, providing accurate and relevant content. My goal is to provide a reliable resource that enhances students' learning experience and boosts their academic performance.

4.9

172 reviews

5
167
4
1
3
0
2
2
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions