100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

A Complete Solution Guide to Principles of Mathematical Analysis (Third Edition) by Walter Rudin – Detailed Explanations by Kit-Wing Yu (2019) | Step-by-Step Worked Solutions, Theorem Proofs, and Concept Clarifications for Real Analysis Students

Rating
-
Sold
-
Pages
444
Grade
A+
Uploaded on
30-10-2025
Written in
2025/2026

This comprehensive solution guide by Kit-Wing Yu (2019) provides detailed, step-by-step explanations to all exercises and problems in Principles of Mathematical Analysis (3rd Edition) by Walter Rudin — widely known as Baby Rudin. Each chapter is carefully analyzed, covering key topics such as sequences, series, continuity, differentiation, integration, metric spaces, functions of several variables, and the Riemann-Stieltjes integral. The guide is designed to help undergraduate and graduate students in mathematics master the abstract concepts of real analysis through clear proofs, logical reasoning, and annotated examples. Each solution emphasizes mathematical rigor, precision, and structure, ensuring a full understanding of the reasoning process behind every step. In addition to complete worked-out solutions, the book also offers helpful summaries of definitions and theorems, insightful notes on common mistakes, and techniques for approaching challenging analysis problems. It serves as a valuable companion for self-study, exam preparation, or reinforcement of lecture materials. Whether you are learning real analysis for the first time or reviewing advanced topics for graduate-level courses, this guide provides clarity and confidence in understanding one of the most fundamental subjects in pure mathematics. Ideal for university students following Rudin’s text in courses such as Mathematical Analysis I, Advanced Calculus, or Real Analysis. Complete, accurate, and pedagogically structured — this solution manual is an essential resource for anyone serious about mastering the beauty and logic of mathematical analysis.

Show more Read less
Institution
Introduction To Continuum Mechanics
Course
Introduction to continuum mechanics

Content preview

COVERS ALL 11
CHAPTERS

, @SOLUTIONSSTUDY




List of Figures


2.1 The neighborhoods Nh(q) and Nr(p) ......................................................................................... 13
2.2 Convex sets and nonconvex sets................................................................................................. 23
2.3 The sets N h(x), N
2
h (x) and Nq m (xk) ........................................................................................ 25

2.4 The construction of the shrinking sequence ............................................................................. 29

3.1 The Cantor set .............................................................................................................................. 49

4.1 The graph of g on [an, bn]............................................................................................................. 59
4.2 The sets E and In i . ..................................................................................................................... 63
4.3 The graphs of [x] and√(x) ............................................................................................................ 70
4.4 An example for α = 2 and n = 5 ............................................................................................. 72
4.5 The distance from x ∈ X to E.................................................................................................... 74
4.6 The graph of a convex function f .............................................................................................. 76
4.7 The positions of the points p, p + κ, q — κ and q...................................................................... 77

5.1 The zig-zag path of the process in (c) ..................................................................................... 105
5.2 The zig-zag path induced by the function f in Case (i) .................................................. 108
5.3 The zig-zag path induced by the function g in Case (i) ................................................... 109
5.4 The zig-zag path induced by the function f in Case (ii) ............................................... 109
5.5 The zig-zag path induced by the function g in Case (ii) ................................................. 110
5.6 The geometrical interpretation of Newton’s method............................................................. 111

8.1 The graph of the continuous function y = f (x) = (π — |x|)2 on [—π, π]. ......................... 186
8.2 The graphs of the two functions f and g ............................................................................... 197
8.3 A geometric proof of 0 < sin x ≤ x on (0, 2 π ]. ........................................................................ 199
8.4 The graph of y = | sin x| .......................................................................................................... 199
8.5 The winding number of γ around an arbitrary point p ...................................................... 202
8.6 The geometry of the points z, f (z) and g(z) .......................................................................... 209

9.1 An example of the range K of f .............................................................................................. 219
9.2 The set of q ∈ K such that (∇f3)(f —1 (q)) = 0 ....................................................................... 220
9.3 Geometric meaning of the implicit function theorem ........................................................... 232
9.4 The graphs around the four points .......................................................................................... 233
9.5 The graphs around (0, 0) and (1, 0) ........................................................................................ 236
9.6 The graph of the ellipse X2 + 4Y 2 = 1 ............................................................................... 239
9.7 The definition of the function ϕ(x, t)....................................................................................... 243
9.8 The four regions divided by the two lines αx1 + βx2 = 0 and αx1 — βx2 = 0................. 252

10.1 The compact convex set H and its boundary ∂H ................................................................ 256
10.2 The figures of the sets Ui, Wi and Vi ....................................................................................................................................... 264
10.3 The mapping T : I2 → H ......................................................................................................... 269
10.4 The mapping T : A → D .......................................................................................................... 270
10.5 The mapping T : A◦ → D0 .....................................................................................................................................................................271
10.6 The mapping T : S → Q ........................................................................................................... 277

vii

,List of Figures viii

10.7 The open sets Q0.1 , Q0.2 and Q ................................................................................................ 278
10.8 The mapping T : I3→ Q3. .......................................................................................................... 280
10.9 The mapping τ1 : Q→ 2 I2 ......................................................................................................................................................................... 288

10.10 The mapping τ2 : Q→ 2 I2 ......................................................................................................................................................................... 289

10.11 The mapping τ2 : Q→ 2 I2 .........................................................................................................................................................................289

10.12 The mapping Φ : D→ R2 \ {0} . .................................................................................................. 296
10.13 The spherical coordinates for the point Σ(u, v) .................................................................... 300
10.14 The rectangles D and E ........................................................................................................... 302
10.15 An example of the 2-surface S and its boundary ∂S ........................................................... 304
10.16 The unit disk U as the projection of the unit ball V ........................................................... 325
10.17 The open cells U and V............................................................................................................. 326
10.18 The parameter domain D .......................................................................................................... 332
10.19 The figure of the Möbius band ................................................................................................. 333
10.20 The “geometric” boundary of M.............................................................................................. 335

11.1 The open square R δ((p, q)) and the neighborhood N √2δ ((p, q)) .......................................... 350

B.1 The plane angle θ measured in radians ................................................................................... 365
B.2 The solid angle Ω measured in steradians .............................................................................. 366
B.3 A section of the cone with apex angle 2θ................................................................................ 366

, List of Tables


6.1 The number of intervals & end-points and the length of each interval for each En.............121

9.1 Expressions of x around four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
points.
9.2 Expressions of y around four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
points.




ix

Written for

Institution
Introduction to continuum mechanics
Course
Introduction to continuum mechanics

Document information

Uploaded on
October 30, 2025
Number of pages
444
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
solutionsstudy Teachme2-tutor
View profile
Follow You need to be logged in order to follow users or courses
Sold
18
Member since
2 year
Number of followers
2
Documents
593
Last sold
1 week ago
TOPSCORE A+

Welcome All to this page. Here you will find ; ALL DOCUMENTS, PACKAGE DEALS, FLASHCARDS AND 100% REVISED &amp; CORRECT STUDY MATERIALS GUARANTEED A+. NB: ALWAYS WRITE A GOOD REVIEW WHEN YOU BUY MY DOCUMENTS. ALSO, REFER YOUR COLLEGUES TO MY DOCUMENTS. ( Refer 3 and get 1 free document). I AM AVAILABLE TO SERVE YOU AT ANY TIME. WISHING YOU SUCCESS IN YOUR STUDIES. THANK YOU.

4.0

2 reviews

5
1
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions