100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Quantum Field Theory for the Gifted Amateur (2016) – Solutions Manual – Lancaster

Beoordeling
-
Verkocht
-
Pagina's
71
Cijfer
A+
Geüpload op
28-10-2025
Geschreven in
2025/2026

INSTANT PDF DOWNLOAD — Complete Solutions Manual for Quantum Field Theory for the Gifted Amateur (2016) by Lancaster. Covers all 15 chapters with step-by-step derivations: Lorentz invariance, scalar & Dirac fields, canonical quantization, path integrals, Feynman diagrams & propagators, gauge fields and QED, scattering amplitudes & cross sections, Wick’s theorem, regularization/renormalization & running couplings, beta functions, symmetries & Noether’s theorem, and spontaneous symmetry breaking. Ideal for graduate QFT problem practice with clearly annotated calculations and exam-ready methods. quantum field theory solutions, QFT solutions manual, Lancaster Blundell solutions, Feynman diagrams practice, propagator calculations, renormalization problems, path integral exercises, canonical quantization, gauge theory problems, QED homework solutions, scalar field theory, Dirac equation spinor, scattering cross section, beta function RG, Wick theorem contractions, perturbation theory QFT, Noether theorem symmetry, spontaneous symmetry breaking, graduate physics exam prep, Oxford textbook

Meer zien Lees minder
Instelling
Quantitative Methods
Vak
Quantitative Methods











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Quantitative Methods
Vak
Quantitative Methods

Documentinformatie

Geüpload op
28 oktober 2025
Aantal pagina's
71
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Voorbeeld van de inhoud

ALL 10 CHAPTERS COVERED




SOLUTIONS MANUAL

,1 Solutions to Odd Numbered
Problems
Random Processes for Engineers


1.1 Simple events (a) Ω = {0, 1}8 , or Ω = {x1 x2 x3 x4 x5 x6 x7 x8 : xi ∈ {0, 1}
for each i}. It is natural to let F be the set of all subsets of Ω. Finally, let
|A|
P (A) = 256 , where |A| denotes the cardinality of a set |A|.
2 1
(b) E1 = {01010101, 10101010} and P (E1 ) = 256 = 128 .
E2 = {00110011, 01100110, 11001100, 10011001} and  P (E 2 ) = 4/256 = 1/64.
8
E3 = {x ∈ Ω : x1 + · · · + x8 = 4} and P (E2 ) = 4 /256 = 70/256 = 35/128.
E4 = {11111111, 11111110, 11111101, 10111111, 01111111, 00111111, 01111110,
11111100} and P (E4 ) = 8/256 = 1/32.
(c) E1 ⊂ E3 , so P (E1 |E3 ) = |E1 |/|E3 | = 2/70 = 1/35.
E2 ⊂ E3 , so P (E2 |E3 ) = |E2 |/|E3 | = 4/70 = 2/35.
1.3 Ordering of three random variables P {X < u < Y } = P {X < u}P {u <
Y } = (1 − e−λu )e−λu = e−λu − e−2λu . Averaging over the choices of u using the
pdf of U yields,

Z 1
0.5 − e−λ + 0.5e−2λ
P {X < U < Y } = e−λu − e−2λu du = .
0 λ



1.5 Congestion at output ports (a) One possibility is Ω = {1, 2, . . . , 8}4 =
{(d1 , d2 , d3 , d4 ) : 1 ≤ di ≤ 8 for 1 ≤ i ≤ 4}, where the packets are assumed to be
numbered one through four, and di is the output port of packet i. Let F be all
the subsets of Ω, and for any event A, let P (A) = |A| 84 .
(b)
 
1 4
P {X1 = k1 , . . . , X8 = k8 } =
84 k 1 k 2 · · · k 8


where k1 k24···k8 = k1 !k24!!···k8 ! is the multinomial coefficient.
P4
(c) One way to do this problem is to note that Xj = i=1 Xij , where Xij = 1 if
packet i is routed to output port j, and Xij = 0 otherwise. Suppose j 6= j ′ . Then
2 1
Xij Xij ′ ≡ 0, and so also, E[Xij Xij ′ ] = 0. Thus, Cov(Xij , Xij ′ ) = 0 − 81 = − 64 .

,2 Solutions to Odd Numbered Problems Random Processes for Engineers



Also, Cov(Xij , Xi′ j ′ ) = 0 if i 6= i′ . Thus,
4
X 4
X
Cov(Xj , X ) = Cov(
j′ Xij , X i′ j ′ )
i=1 i′ =1
4 X
X 4
= Cov(Xij , Xi′ j ′ )
i=1 i′ =1
4
X 1 1
= Cov(Xij , Xij ′ ) = 4(− )=− .
i=1
64 16

(d) Consider the packets one at a time in order. The first packet is routed to
a random output port. The second is routed to a different output port with
probability 78 . Given the first two packets are routed to different output ports, the
third packet is routed to yet another output port with probability 68 . Similarly,
given the first three packets are routed to distinct output ports, the fourth packet
is routed to yet another output port with probability 85 . The answer is thus
8·7·6·5
84 = 105
256 ≈ 0.410.
(e) The event is not true if and only if there are either exactly 3 packets assigned
to one output port or all four packets assigned to one output port. There are
4 · 8 · 7 possibilities for exactly three packets to be assigned to one output port,
since there are four choices for which packet is not with the other three, eight
choices of output port for the group of three, and given that, seven choices of
output port for the fourth packet. There are 8 possibilities for all four packets to
be routed to the same output port. Thus, some output port has three or more
packets assigned to it with probability 4·8·7+884 = 4·7+1
83
29
= 512 ≈ 0.0566. Thus,
29
P {Xi ≤ 2 for all i} = 1 − 512 ≈ 0.9434.
1.7 Conditional probability of failed device given failed attempts (a) P (first
attempt fails)=0.2+(0.8)(0.1)=0.28
(b) P (server is working | first attempt fails ) =
P (server working, first attempt fails)/P (first attempt fails) =(0.8)(0.1)/0.28≈
0.286
(c) P (second attempt fails | first attempt fails ) =P (first two attempts fail)/P (first
attempt fails) = [0.2 + (0.8)(0.1)2 ]/0.28 ≈0.783
(d) P (server is working | first and second attempts fail ) =P (server is work-
ing and first two attempts fail)/P (first two attempts fail) = (0.8)(0.1)2 /[0.2 +
(0.8)(0.1)2 ] ≈0.0385
1.9 Conditional lifetimes; memoryless property of the geometric distribution
(a) P {X > 3} = 1 − p(3) = 0.8, P (X > 8|X > 5) = P ({X>8}∩{X>5}) P {X>5} =
P {X>8} 0
P {X>5} = 0.40 = 0.
(So a five year old working battery is not equivalent to a new one!)
(b) P {Y > 3} = P (miss first three shots) = (1 − p)3 . On the other hand,

P ({Y > 8} ∩ {Y > 5}) P {Y > 8} (1 − p)8
P (Y > 8|Y > 5) = = = = (1 − p)3 .
P {Y > 5} P {Y > 5} (1 − p)5

, Solutions to Odd Numbered ProblemsRandom Processes for Engineers 3




(A player that has missed five shots is equivalent to a player just starting to take
shots.)
(c) Y has a geometric distribution. (Part (b) illustrates the fact that the geomet-
ric distribution is the memoryless lifetime distribution on the positive integers.
The exponential distribution is the continuous type distribution with the same
property.)
1.11 Distribution of the flow capacity of a network One way to solve this prob-
lem is to compute X for each of the 32 outcomes for the links. Another is to use
divide and conquer by conditioning on the state of a key link, such as link 4.

P {X = 0} = P (((F1 F3 ) ∪ (F2 F5 ))F4c ) + P ((F1 ∪ F2 )(F3 ∪ F5 )F4 )
= ((0.2)2 + (0.2)2 − (0.2)4 )(0.8) + (0.2 + 0.2 − (0.2)2 )2 (0.2) = 0.08864.

P {X = 10} = P (F1c F3c (F2 F5 )c F4c ) + P (F1c F2c F3c F5c F4 )
= (0.8)3 (1 − (0.2)2 ) + (0.8)4 (0.2) = 0.57344.

P {X = 5} = 1 − P {X = 0} − P {X = 10} = 0.33792.
1.13 A CDF of mixed type (a) FX (0.8) = 0.5.
(b) There is a half unit of probability mass
R 2 at zero and a density of value 0.5
between 1 and 2. Thus, E[X] = 0 × 0.5 + 1 x(0.5)dx = 3/4 and,
R2
(c) E[X 2 ] = 02 × 0.5 + 1 x2 (0.5)dx = 7/6. So Var(X) = 7/6 − (3/4)2 = 29/48
.
1.15 Poisson and geometric random variables with conditioning
P ∞ P∞ −µ i P∞ −µ i
(a) P {Y < Z} = i=0 j=i+1 e i! µ p(1 − p)j−1 = i=0 e [µ(1−p)] i! = e−µp
Pi−1 e−µ µj
(b) P (Y < Z|Z = i) = P (Y < i|Z = i) = P {Y < i} = j=0 j!
 −µ i 
(c) P (Y = i|Y < Z) = P {Y = i < Z}/P {Y < Z} = e i! µ (1 − p)i /e−µp =
e−µ(1−p) [µ(1−p)]i
i! ,
which is the Poisson distribution with mean µ(1 − p)
(d) µ(1 − p)
1.17 Transformation of a random variable (a) Observe that Y takes values in
the interval [1, +∞).

P {X ≤ ln c} = 1 − exp(−λ ln c) = 1 − c−λ c ≥ 1
FY (c) = P {exp(X) ≤ c} =
0 c<1
Differentiate to obtain

λc−(1+λ) c≥1
fY (c) =
0 c<1
(b) Observe that Z takes values in the interval [0, 3].

 0 c<0
FZ (c) = P {min{X, 3} ≤ c} = P {X ≤ c} = 1 − exp(−λc) 0≤c<3

1 c≥3
The random variable Z is neither discrete nor continuous type. Rather it is a

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
TestBanksStuvia Chamberlain College Of Nursng
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2731
Lid sinds
2 jaar
Aantal volgers
1199
Documenten
1918
Laatst verkocht
14 uur geleden
TESTBANKS &amp; SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3.9

294 beoordelingen

5
161
4
43
3
31
2
20
1
39

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen