answers
Invertible Matrix Theorem - CORRECT ANSWERS ✔✔Let A be a
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
square n x n matrix, then the following statements are either all
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
true or all false...
|\ |\ |\
-A is an invertible matrix
|\ |\ |\ |\
-A is row equivalent to the n x n identity matrix
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
-A has n pivot positions
|\ |\ |\ |\
-The equation Ax=0 has only the trivial solution
|\ |\ |\ |\ |\ |\ |\
-The columns of A form a linearly independent set
|\ |\ |\ |\ |\ |\ |\ |\
-The SLE Ax=b has a solution for each b in Rn
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
-The columns of A span Rn
|\ |\ |\ |\ |\
-There is an n x n matrix C such that CA=I
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
-There is an n x n matrix D such that AD=I
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
-A^T is an invertible matrix
|\ |\ |\ |\
Determinant - CORRECT ANSWERS ✔✔det A= a11detA11 - |\ |\ |\ |\ |\ |\ |\ |\
a12detA12 + ... + (-1)^(1+n)a1ndetA1n |\ |\ |\ |\
The determinant of an n x n matrix A can be computed by... -
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
CORRECT ANSWERS ✔✔... a cofactor expansion across any row or
|\ |\ |\ |\ |\ |\ |\ |\ |\
down any column
|\ |\ |\
, Cofactor expansion across the ith row - CORRECT ANSWERS
|\ |\ |\ |\ |\ |\ |\ |\ |\
✔✔det A= ai1Ci1 + ai2Ci2 + ... + ainCin
|\ |\ |\ |\ |\ |\ |\ |\
=(-1)^(i+1)*ai1*detAi1 + (-1)^(i+2)*ai2*detAi2+ ... + (- |\ |\ |\ |\ |\
1)^(i+n)*ain*detAin
Cofactor expansion down jth column - CORRECT ANSWERS ✔✔det
|\ |\ |\ |\ |\ |\ |\ |\
A= a1jC1j + a2jC2j + ... + anjCnj
|\ |\ |\ |\ |\ |\ |\ |\
=(-1)^(1+j)*a1j*detA1j + (-1)^(2+j)*a2j*detA2j+ ... + (- |\ |\ |\ |\ |\
1)^(n+j)*anj*detAnj
If A is a triangular matrix,... - CORRECT ANSWERS ✔✔... then det
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
A is the product of the entries on the main diagonal of A
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
Effects of row operations on determinants - CORRECT ANSWERS
|\ |\ |\ |\ |\ |\ |\ |\ |\
✔✔Let A be a square matrix |\ |\ |\ |\ |\
-If a multiple of one row of A is added to another row to produce
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
a matrix B, then det B= det A
|\ |\ |\ |\ |\ |\ |\
-If two rows are interchanged (swapped) to produce B, then det
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
B= -det A |\ |\
-If one row of A is multiplied by k to produce B, then det B =
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
k*det A |\
det = (-1)^r*det U... - CORRECT ANSWERS ✔✔... when A is
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
invertible
det = 0 - CORRECT ANSWERS ✔✔... when A is not invertible
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\