t t t
SOLUTIONS
, Contents
Preface ............................................................................................................................. iv
1. Vectors, Tensors, and Equations of Elasticity ............................................... 1
t t t t t
2. Energy Principles and Variational Methods .............................................. 19
t t t t
3. Classical Theory of Plates.................................................................................51
t t t
4. Analysis of Plate Strips .................................................................................... 59
t t t
5. Analysis of Circular Plates .............................................................................. 75
t t t
6. Bending of Simply Supported Rectangular Plates ................................. 91
t t t t t
7. Bending of Rectangular Plates with Various
t t t t t
Boundary Conditions.......................................................................................... 99
t
8. General Buckling of Rectangular Plates.................................................... 115
t t t t
9. Dynamic Analysis of Rectangular Plates ................................................. 123
t t t t
10. Shear Deformation Plate Theories ............................................................. 129
t t t
11. Theory and Analysis of Shells...................................................................... 139
t t t t
12. Finite Element Analysis of Plates ............................................................... 157
t t t t
@
@SSeeisismmicicisisoolalatitoionn
, 1
Vectors, Tensors, and t t
t Equations of Elasticity t t
1.1 Prove the following properties of δij and εijk (assume i,j = 1,2,3 when they are
t t t t t t t t t t t t t t t t t
dummy indices):
t t
(a) Fijδjk = Fik t t
(b) δijδij =δii =3 t t t t t
(c) εijkεijk = 6 t t t
(d) εijkFij =0 whenever Fij =Fji (symmetric) t t t t t t t
Solution:
1.1(a) Expanding the expression
t t t
Fijδjk =Fi1δ1k +Fi2δ2k +Fi3δ3k
t t
t
t
t
t
t
Of the three terms on the right hand side, only one is nonzero. It is equal to Fi1 if
t t t t t t t t t t t t t t t t t t
k = 1, Fi2 if k = 2, or Fi3 if k = 3. Thus, it is simply equal to Fik.
t t t t t t t t t t t t t t t t t t t t
1.1(b) By actual expansion, we have
t t t t t
δijδij = δi1δi1 +δi2δi2 +δi3δi3
t t
t
t
t
t
t
= (δ11δ11 + 0 + 0) + (0 + δ22δ22 + 0) + (0 + 0 + δ33δ33) t t t t t t t t t t t t t t t
=3 t t
and
δii= δ11 +δ22 +δ33 =1+1+1 =3
t t t t t t t t t t t t t t t
Alternatively,usingFij=δijinProblem1.1a,wehaveδijδjk=δik,whereiandk are free t t t t t t t t t t t t t t t t t t
indices that can any value. In particular, for i = k, we have the required result.
t t t t t t t t t t t t t t t t
1.1(c) Using the ε-δ identity and the result of Problem 1.1(b), we obtain
t t t t t t t t t t t t
εijkεijk = δiiδjj − δijδij =9− 3=6 t
t t t t t t t t t t t
@
@SSeeisismmicicisisoolalatitoionn
, 2 Theory and Analysis of Elastic Plates and Shells t t t t t t t
1.1(d) We have t t
Fijεijk = −Fijεjik (interchanged i and j) t t t t t t
=−Fjiεijk (renamed i as j and j as i) t t t t t t t t t
Since Fji = Fij, we have
t t t t t
0 = (Fij + Fji)εijk t t t t t
=2Fijεijk t
t
Theconverse alsoholds, i.e., ifFijεijk=0, then Fij=Fji. We have 0 = Fij
t t t t t t t t t t t t t t t
t t
εijk
t
1
= (Fijεijk +Fijεijk)
2
t t
t t t
t
1
= (Fijεijk −Fijεjik) (interchanged i and j)
2
t t t t t t t t
1
t
= (Fijεijk−Fjiεijk) (renamed i as j and j as i)
2
t t t t t t t t t t t
1
t
= (Fij −Fji)εijk
2
t t t t
t
from which it follows that Fji=Fij.
t t t t t t t
♠ New Problem 1.1: Showthat
t t t t t
∂r xi
= t
∂xi r
Solution: Write the position vector in cartesian component form using the index notation
t t t t t t t t t t t t
r= x j ê j (1) t t
Thenthe square of the magnitude of the position vector is
t t t t t t t t t t
r2=r·r=( x i ê i ) ·( xj ê j ) =xixjδij
t t t t t t t t t t
= xixi = xkxk t t t (2)
Its derivative of r with respect to xi can be obtained from
t t t t t t t t t t t
∂r2 = ∂
(xkxk)
∂xi ∂x
∂xik ∂xk
= x +x t
t
t t t t
∂xi k k∂x
i t t t
∂xk
=2 xk = 2δikxk =2xi t t
t t t t
∂xi
Hence
∂r xi
= t (3)
∂xi r
@
@SSeeisismmicicisisoolalatitoionn