SOLUTIONS MANUAL
,Table of contents
Part 1: Foundations and elementary applications
1. Mathematical Preliminaries
2. Deformation: Displacements and Strains
3. Stress and Equilibrium
4. Material Behavior – Linear Elastic Solids
5. Formulation and Solution Strategies
6. Strain Energy and Related Principles
7. Two-Dimensional Formulation
8. Two-Dimensional Problem Solution
9. Extension, Torsion, and Flexure of Elastic Cylinders
Part 2: Advanced applications
10. Complex Variable Methods
11. Anisotropic Elasticity
12. Thermoelasticity
13. Displacement Potentials and Stress Functions: Applications to Three-Dimensional Problems
14. Nonhomogeneous Elasticity
15. Micromechanics Applications
16. Numerical Finite and Boundary Element Methods
,1
1-1.
(a) aii = a11 + a22 + a33 = 1 + 4 + 1 = 6 (scalar)
aij aij = a11a11 + a12 a12 + a13 a13 + a21a21 + a22 a22 + a23 a23 + a31a31 + a32 a32 + a33 a33
= 1 + 1 + 1 + 0 + 16 + 4 + 0 + 1 + 1 = 25 (scalar)
1 1 11 1 1 1 6 4
a a = 0 4 20 4 2 = 0 18 10 (matrix)
ij jk
0 1 10 1 1 0 5 3
3
a b = a b + a b + a b = 4 (vector)
ij j i1 1 i2 2 i3 3
2
aij bib j = a11b1b1 + a12b1b2 + a13b1b3 + a21b2b1 + a22b2b2 + a23b2b3 + a31b3b1 + a32b3b2 + a33b3b3
= 1+ 0 + 2 + 0 + 0 + 0 + 0 + 0 + 4 = 7 (scalar)
b1b1 b1b2 b1b3 1 0 2
b b = b b b b b b = 0 0 0 (matrix)
2 3
i j 2 1 2 2
b3b1 b3b2 b3b3 2 0 4
bibi = b1b1 + b2b2 + b3b3 = 1 + 0 + 4 = 5 (scalar)
(b) aii = a11 + a22 + a33 = 1 + 2 + 2 = 5 (scalar)
aij aij = a11a11 + a12 a12 + a13a13 + a21a21 + a22 a22 + a23a23 + a31a31 + a32 a32 + a33a33
= 1+ 4 + 0 + 0 + 4 +1+ 0 +16 + 4 = 30 (scalar)
1 2 01 2 0 1 6 2
a a = 0 2 10 2 1 = 0 8 4 (matrix)
ij jk
0 4 20 4 2 0 16 8
4
a b = a b + a b + a b = 3 (vector)
ij j i1 1 i2 2 i3 3
6
aijbib j = a11b1b1 + a12b1b2 + a13b1b3 + a21b2b1 + a22b2b2 + a23b2b3 + a31b3b1 + a32b3b2 + a33b3b3
= 4 + 4 + 0 + 0 + 2 +1+ 0 + 4 + 2 = 17 (scalar)
b1b1 b1b2 b1b3 4 2 2
b b = b b b b b b = 2 1 1 (matrix)
2 3
i j 2 1 2 2
b3b1 b3b2 b3b3 2 1 1
bibi = b1b1 + b2b2 + b3b3 = 4 +1+1 = 6 (scalar)
Copyright © 2009, Elsevier Inc. All rights reserved.
, 2
(c) aii = a11 + a22 + a33 = 1 + 0 + 4 = 5 (scalar)
aij aij = a11a11 + a12 a12 + a13a13 + a21a21 + a22 a22 + a23a23 + a31a31 + a32 a32 + a33a33
= 1+1+1+1+ 0 + 4 + 0 +1+16 = 25 (scalar)
1 1 11 1 1 2 2 7
a a = 1 0 21 0 2 = 1 3 9 (matrix)
ij jk
0 1 40 1 4 1 4 18
2
a b = a b + a b + a b = 1 (vector)
ij j i1 1 i2 2 i3 3
1
aijbib j = a11b1b1 + a12b1b2 + a13b1b3 + a21b2b1 + a22b2b2 + a23b2b3 + a31b3b1 + a32b3b2 + a33b3b3
= 1+1+ 0 +1+ 0 + 0 + 0 + 0 + 0 = 3 (scalar)
b1b1 b1b2 b1b3 1 1 0
b b = b b b b b b = 1 1 0 (matrix)
2 3
i j 2 1 2 2
b3b1 b3b2 b3b3 0 0 0
bibi = b1b1 + b2b2 + b3b3 = 1+1+ 0 = 2 (scalar)
1-2.
1 1
(a) aij = (aij + a ji ) + (aij − a ji )
2 2
2 1 1 0 1 1
= 1 8 3 + −1 0 1
1 1
2 2
1 3 2 −1 −1 0
clearlya(ij ) and a[ij ] satisfy the appropriate conditions
1 1
a = (a + a ) + (a − a )
(b) ij ji
2 ij ji
2 ij
1 2 2 0 1 0 2 0
= 2 4 5 + − 2 0 − 3
2 2
0 5 4 0 3 0
clearlya(ij ) and a[ij ] satisfy the appropriate conditions
Copyright © 2009, Elsevier Inc. All rights reserved.