100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4,6 TrustPilot
logo-home
Prüfung

Test Bank – Acid–Base Equilibria: Complete Practice Questions, Detailed Solutions, and Verified Answers for Advanced Chemistry Exam Preparation (Updated 2025)

Bewertung
-
Verkauft
-
seiten
85
Klasse
A+
Hochgeladen auf
13-10-2025
geschrieben in
2025/2026

Test Bank – Acid–Base Equilibria: Complete Practice Questions, Detailed Solutions, and Verified Answers for Advanced Chemistry Exam Preparation (Updated 2025) Note on significant figures: If the final answer to a solution needs to be rounded off, it is given first with one nonsignificant figure, and the last significant figure is underlined. The final answer is then rounded to the correct number of significant figures. In multistep problems, intermediate answers are given with at least one nonsignificant figure; however, only the final answer has been rounded off. 16.1. Abb

Mehr anzeigen Weniger lesen











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Dokument Information

Hochgeladen auf
13. oktober 2025
Anzahl der Seiten
85
geschrieben in
2025/2026
Typ
Prüfung
Enthält
Fragen & Antworten

Themen

Inhaltsvorschau

CHAPTER 16
Acid-Base Equilibria


■ SOLUTIONS TO EXERCISES
Note on significant figures: If the final answer to a solution needs to be rounded off, it is given first with
one nonsignificant figure, and the last significant figure is underlined. The final answer is then rounded to
the correct number of significant figures. In multistep problems, intermediate answers are given with at
least one nonsignificant figure; however, only the final answer has been rounded off.

16.1. Abbreviate the formula of lactic acid as HL. To solve, assemble a table of starting, change, and
equilibrium concentrations.
Conc. (M) HL + H2O  H3O+ + L
Starting 0.025 0 0
Change x +x +x
Equilibrium 0.025  x x x
Substituting into the equilibrium-constant equation gives
[H3O ] [L ] (x) 2
Ka = =
[HL] (0.025  x)

The value of x equals the value of the molarity of the H3O+ ion, which can be obtained from the
pH:
[H3O+] = antilog (−pH) = antilog (−2.75) = 0.00178 M
Substitute this value for x into the equation to get
(x) 2 (0.00178)2
Ka = = = 1.36  10−4 = 1.4  10−4
(0.025  x) (0.025  0.00178)

The degree of ionization is
0.00178
Degree of ionization = = 0.071
0.025

16.2. To solve, assemble a table of starting, change, and equilibrium concentrations. Use HAc as the
symbol for acetic acid.
Conc. (M) HAc + H2O  H3O+ + Ac−
Starting 0.10 0 0
Change −x +x +x
Equilibrium 0.10 − x x x




© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

, Chapter 16: Acid-Base Equilibria 573

Now, substitute these concentrations and the value of Ka into the equilibrium-constant equation
for acid ionization:
[H3 O ] [Ac  ] (x) 2
Ka = = = 1.7  10−5
[HAc] (0.10  x)

Solve the equation for x, assuming x is much smaller than 0.10, so (0.10 − x)  0.10.
(x) 2
 1.7  10−5
(0.10)

x2 = 1.7  10−5  0.10 = 1.7  10−6
x = 0.00130 M
Check to make sure the assumption that (0.10 − x)  0.10 is valid:
0.10 − 0.00130 = 0.0987, = 0.10 (to two significant figures)
The concentrations of hydronium ion and acetate ion are
[H3O+] = [Ac−] = x = 0.0013 = 1.3  10−3 M
The pH of the solution is
pH = − log [H3O+] = − log (0.00130) = 2.884 = 2.88
The degree of ionization is
0.00130
Degree of ionization = = 0.0130 = 0.013
0.10

16.3. Abbreviate the formula for pyruvic acid as HPy. To solve, assemble a table of starting, change,
and equilibrium concentrations:
Conc. (M) HPy + H2O  H3O+ + Py−
Starting 0.0030 0 0
Change −x +x +x
Equilibrium 0.0030 − x x x
Substitute the equilibrium concentrations and the value of Ka into the equilibrium-constant
expression to get
[H3 O ] [Py  ] (x) 2
Ka = = = 1.4  10−4
[HPy] (0.0030  x)

Note that the concentration of acid divided by Ka is 0.0030/1.4  10−4 = 21, which is considerably
smaller than 100. Thus, you can expect that x cannot be ignored compared with 0.0030. The
quadratic formula must be used. Rearrange the preceding equation to put it into the form
ax2 + bx + c = 0.
x2 + 1.4  10−4 x − 4.20  10−7 = 0




© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

, 574 Chapter 16: Acid-Base Equilibria


Substitute into the quadratic formula to get

1.4 104  (1.4 104 ) 2  4(4.20 107 ) 1.4 104  1.303 103
x= =
2 2
Using the positive root,  = [H3O+] = 5.81  10−4 M. Now you can calculate the pH.
pH = − log [H3O+] = − log (5.81  10−4) = 3.2350 = 3.24

16.4. To solve, note that K a = 1.3  10−2 >> K a = 6.3  10−8, and hence the second ionization and K a
1 2 2


can be ignored. Assemble a table of starting, change, and equilibrium concentrations.
Conc. (M) H2SO3 + H2O  H3O+ + HSO3−
Starting 0.25 0 0
Change −x +x +x
Equilibrium 0.25 − x x x
Substitute into the equilibrium-constant expression for the first ionization.
[H3 O ] [HSO3 ] (x) 2
K a1 = = = 1.3  10−2 = 0.013
[H 2SO3 ] (0.25  x)

This gives x2 + 0.013x − 0.00325 = 0.
Note that the concentration of acid divided by Ka is 0.25/0.013 = 19, which is considerably
smaller than 100. Thus, you can expect that x cannot be ignored compared with 0.25. Reorganize
the above equilibrium-constant expression into the form ax2 + bx + c = 0, and substitute for a, b,
and c in the quadratic formula.

0.013  (0.013) 2  4(0.00325) 0.013  0.1147
x= =
2 2
Using the positive root, x = [H3O+] = 0.05087 M.
pH = − log (0.05087) = 1.293 = 1.29
To calculate [SO32−], which will be represented by y, use the second ionization. Assume the
starting concentrations of H3O+ and HSO3− are those from the first equilibrium.
Conc. (M) HSO3− + H2O  H3O+ + SO32−
Starting 0.0508 0.0508 0
Change −y +y +y
Equilibrium 0.0508 − y 0.0508 − y y
Now, substitute into the K a expression for the second ionization.
2



[H3 O ] [SO32  ] (0.0508  y )(y )
Ka2 = = = 6.3  10−8
[HSO3 ] (0.0508  y )

Assuming y is much smaller than 0.0508, note that the (0.0508 + y) cancels the (0.0508 − y) term,
leaving y  K a , or
2



y = [SO32−]  6.3  10−8 M (note the assumption that y << 0.0508 is valid)




© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

, Chapter 16: Acid-Base Equilibria 575

16.5. Convert the pH first to pOH and then to [OH−]:
pOH = 14.00 − pH = 14.00 − 9.84 = 4.16
[OH−] = antilog (−4.16) = 6.92  10−5 M
Using the symbol Qu for quinine, assemble a table of starting, change, and equilibrium
concentrations.
Conc. (M) Qu + H2O  HQu+ + OH−
Starting 0.0015 0 0
Change −x +x +x
Equilibrium 0.0015 − x x x
Note that x = 6.92  10−5. Substitute into the equilibrium-constant expression to get
[HQ ] [OH  ] (x) 2 (6.92 105 ) 2
Kb = = = = 3.346  10−6 = 3.3  10−6
[Qu] (0.0015  x) (0.0015  6.92 105 )

16.6. Assemble a table of starting, change, and equilibrium concentrations.
Conc. (M) NH3 + H2O  NH4+ + OH−
Starting 0.20 0 0
Change −x +x +x
Equilibrium 0.20 − x x x
Assume x is small enough to ignore compared with 0.20. Substitute into the equilibrium-constant
expression to get
[NH 4  ] [OH  ] (x) 2 (x) 2
Kb = =  = 1.8  10−5
[NH3 ] (0.20  x) (0.20)

Solving for x gives
x2 = (0.20)  1.8  10−5 = 3.6  10−6
x = [OH−]  1.89  10−3 M (Note that x is negligible compared to 0.20.)
Now calculate the hydronium-ion concentration.
Kw 1.0 1014
[H3O+] = 
= = 5.29  10−12 = 5.3  10−12 M
[OH ] 1.89 103

16.7. a. Acidic. NH4NO3 is the salt of a weak base (NH3) and a strong acid (HNO3), so a solution of
NH4NO3 is acidic because of the hydrolysis of NH4+.
b. Neutral. KNO3 is the salt of a strong base (KOH) and a strong acid (HNO3), so a solution of
NH4NO3 is neutral because none of the ions hydrolyze.
c. Acidic. Al(NO3)3 is the salt of a weak base [Al(OH)3] and a strong acid (HNO3), so a
solution of Al(NO3)3 is acidic because of the hydrolysis of Al3+.




© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
$24.29
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
UPenn

Ebenfalls erhältlich im paket-deal

Thumbnail
Paket-Deal
TEST BANK Solutions Manual General Chemistry ELEVENTH EDITION Darrell D. Ebbing Wayne State University Steven D. Gammon
-
25 2025
$ 581.05 Mehr infos

Lerne den Verkäufer kennen

Seller avatar
UPenn Bloomsburg University Of Pennsylvania
Profil betrachten
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
0
Mitglied seit
4 Jahren
Anzahl der Follower
0
Dokumente
246
Zuletzt verkauft
-

0.0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen