100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions Manual – Introduction to Electrodynamics, 5th Edition by Griffiths , All Chapters Covered|| Latest PDF

Beoordeling
-
Verkocht
-
Pagina's
412
Cijfer
A+
Geüpload op
26-09-2025
Geschreven in
2025/2026

Solutions Manual – Introduction to Electrodynamics, 5th Edition by Griffiths , All Chapters Covered|| Latest PDF

Instelling
Griffiths Electrodynamics 5th Edition
Vak
Griffiths Electrodynamics 5th Edition











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Griffiths Electrodynamics 5th Edition
Vak
Griffiths Electrodynamics 5th Edition

Documentinformatie

Geüpload op
26 september 2025
Aantal pagina's
412
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Solutions Manual –

Introduction to Electrodynamics,
By Griffiths
5th edition

,Contents

1 Vector Analysis 4

2 Electrostatics 26

3 Potential 53

4 Electric Fields in Matter 92

5 Magnetostatics 110

6 Magnetic Fields in Matter 133

7 Electrodynamics 145

8 Conservation Laws 168

9 Electromagnetic Waves 185

10 Potentials and Fields 210

11 Radiation 231

12 Electrodynamics and Relativity 262

,Chapter 1

Vector Analysis

Problem 1.1






}
(a) From the diagram, |B + C| cos ✓3 = |B| cos ✓1 + |C| cos ✓2 . Multiply by |A|.
|A||B + C| cos ✓3 = |A||B| cos ✓1 + |A||C| cos ✓2 . |C| sin θ2
So: A·(B + C) = A·B + A·C. (Dot product is distributive)
Θ2
Similarly: |B + C| sin ✓3 = |B| sin ✓1 + |C| sin ✓2 . Mulitply by |A| n̂. Θ3 ✯

|A||B + C | sin ✓3 n̂ = | A|| B| sin ✓1 n̂ + | A|| C| sin ✓2 n̂.
} ✲A
|B| sin θ
Θ1
If n̂ is the unit vector pointing out of the page, it follows that ` ˛¸ x` ˛¸ x 1

|B| cos θ1 |C| cos θ2
A⇥(B + C) = (A⇥B) + (A⇥C). (Cross product is distributive)
(b) For the general case, see G. E. Hay’s Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and
Section 8 (cross product)
Problem 1.2 C

The triple cross-product is not in general associative. For example,
suppose A = B and C is perpendicular to A, as in the diagram. ✲A=B
Then (B⇥C) points out-of-the-page, and A⇥(B⇥C) points down, ❂
And has magnitude ABC. But (A⇥B) = 0, so (A⇥B)⇥C = 0
B×C ❄
A×(B×C)
A⇥(B⇥C).

Problem 1.3 z✻
p p
A = +1 x̂ + 1 ŷ — 1 ẑ; A = 3; B = 1 x̂ + 1 ŷ + 1 ẑ; B = 3.
p p ✣B
A·B = +1 + 1 — 1 = 1 = AB cos ✓ = 3 3 cos ✓ ) cos ✓ = 13 . θ
✲Y

✓ = cos—
1 1
3 ⇡ 70.5288○ ❲
✰ A
X
Problem 1.4
The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):

A = —1 x̂ + 2 ŷ + 0 ẑ; B = —1 x̂ + 0 ŷ + 3 ẑ.

, x̂ ŷ ẑ
. .
⇥ .— .
A B = . 11 20 3 0 = 6 x̂ + 3 ŷ + 2 ẑ.
.
This has the right direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its
Length: —
p
|A⇥B| = 36 + 9 + 4 = 7. n̂ = A⇥B = 67 x̂ + 73 ŷ + 72ẑ .
|A⇥B|
Problem 1.5
. x̂ Ŷ ẑ .
A⇥(B⇥C) = . Ax Ay Az .
.( Bycz — bzcy ) (bzcx — bxcz ) (bxcy — bycx .)
— — —
= x̂[A y (b x c y b y c x ) A z (b
(i’ll just check the x-component; the othersz c x bx cz )]go
+ the + ẑ() way)
ŷ() same
= x̂(ay bx cy — ay by cx — az bz cx + az bx cz ) + ŷ() + ẑ().
B(A·C) — C(A·B) = [Bx (ax cx + ay cy + az cz ) — Cx (ax bx + ay by + az bz )] x̂ + () ŷ + () ẑ
= x̂(ay bx cy + az bx cz — ay by cx — az bz cx ) + ŷ() + ẑ(). They agree.
Problem 1.6
A⇥(B⇥C)+B⇥(C⇥A)+C⇥(A⇥B) = B(A·C)—C(A·B)+C(A·B)—A(C·B)+A(B·C)—B(C·A) = 0.
So: A⇥(B⇥C) — (A⇥B)⇥C = —B⇥(C⇥A) = A(B·C) — C(A·B).
If this is zero, then either A is parallel to C (including the case in which they point in opposite directions, or
one is zero), or else B·C = B·A = 0, in which case B is perpendicular to A and C (including the case B = 0.)
Conclusion: A⇥(B⇥C) = (A⇥B)⇥C () either A is parallel to C, or B is perpendicular to A and C.
Problem 1.7
= (4 x̂ + 6 ŷ + 8 ẑ) — (2 x̂ + 8 ŷ + 7 ẑ) = 2 x̂ — 2 ŷ + ẑ
p
= 4+4+1= 3

ˆ = = 2 2
— 3 ŷ + 31ẑ
3 x̂

Problem 1.8
(a) Āy B̄y + Āz B̄z = (cos $Ay + sin $Az )(cos $By + sin $Bz ) + ( —sin $Ay + cos $Az )( —sin $By + cos $Bz )
= cos2 $ayby + sin $ cos $(aybz + azby) + sin2 $azbz + sin2 $ayby — sin $ cos $(aybz + azby) +
cos $azbz
2

= (cos2 $ + sin2 $)ayby + (sin2 $ + cos2 $)azbz = ayby + azbz. X
(b) (Ax)2 + (Ay)2 + (Az)2 = ⌃3 Aiai = ⌃3 ⌃J= Rijaj ⌃
3 3 Rikak = ⌃j,k (⌃irij Rik) Aj Ak.
i=1 i=1 1 k=1


This equals Ax2 + A2y + A2zprovided ⌃3i=1 R R = if jj =
01 if k
6=k
ij ik

Moreover, if R is to preserve lengths for all vectors A, then this condition is not only sufficient but also
Necessary. For suppose A = (1, 0, 0). Then ⌃j,k (⌃i rijrik) ajak = ⌃i Ri1Ri1, and this must equal 1 (since we
WantA x2 +A y2 +A z2 = 1). Likewise, ⌃i=1
3 R R = ⌃3 R R = 1. To check the case j 6= k, choose A = (1, 1, 0).
i2 i2 i=1 i3 i3
Then we want 2 = ⌃j,k (⌃i rijrik) ajak = ⌃i Ri1Ri1 + ⌃i Ri2Ri2 + ⌃i Ri1Ri2 + ⌃i Ri2Ri1. But we already
know that the first two sums are both 1; the third and fourth are equal, so ⌃i Ri1Ri2 = ⌃i Ri2Ri1 = 0, and so
on for other unequal combinations of j, k. X In matrix notation: R̃R = 1, where R̃ is the transpose of R.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Examarena West Virginia University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
284
Lid sinds
1 jaar
Aantal volgers
33
Documenten
462
Laatst verkocht
1 week geleden
Examarena

Are you looking for top-quality study resources to help you excel in your courses? Look no further! I’ve uploaded my carefully crafted notes, assignments, and exam guides to help you master your studies. Don’t miss out on better grades. email me and start using my materials today and feel the difference!

3.6

43 beoordelingen

5
14
4
9
3
11
2
5
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen