100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

MATH 255 - Probability and Statistics Final Exam Solutions

Beoordeling
-
Verkocht
-
Pagina's
10
Cijfer
A+
Geüpload op
25-09-2025
Geschreven in
2025/2026

MATH 255 - Probability and Statistics Final Exam Solutions 5 January 2025 Problem 1. [10pt] The joint pdf of random variables X and Y is given by: fX,Y (x, y) =    c if (x, y) ∈ S, 0 otherwise, where c is a constant and S is the set shown in the plot. (a) Find the least mean square (LMS) estimator g(X) of Y . E[Y |X] =    0.5 if X ∈ [0, 1] ∪ [2, 3] , 1 if X ∈ [1, 2]. Before we start solving the problem, let us first find the value of c. Since the joint distribution fX,Y (x, y) is uniform over the region S, we have c = 1 area(S) = 1 4 . The optimal LMS estimator is given by g(X) = E[Y |X]. For that, we will characterize E[Y |X = x]. When 0 < x < 1 and 2 < x < 3, the conditional distribution of Y given X = x, that is fY |X(y|x) is a uniform distribution in [0, 1]. Thus, when 0 < x < 1 and 2 < x < 3, E[Y |X = x] = 0.5. On the other hand, when 1 < x < 2, fY |X(y|x) is a uniform distribution in [0,2]. Thus, when 1 < x < 2, E[Y |X = x] = 1. As a result, E[Y |X] can be written as: E[Y |X] =    0.5 if X ∈ [0, 1] ∪ [2, 3] , 1 if X ∈ [1, 2]. 1 (b) Find the mean squared error of the estimator g(X), i.e., E[(Y − g(X))2 ]. E[(Y − g(X))2 ] = 5 24 . Next, we will find the mean squared error of the estimator g(X). For that, we will use the uniform distribution mean and variance. If U is a continuous r.v. in between [a, b], its mean and variance is given by E[U] = a+b 2 and Var(U) = (b−a) 2 12 . We will also utilize the law of iterated expectation for this part in the following form: E[(Y − g(X))2 ]

Meer zien Lees minder
Instelling
Revision
Vak
Revision









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Revision
Vak
Revision

Documentinformatie

Geüpload op
25 september 2025
Aantal pagina's
10
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Bilkent University Fall 2024


MATH 255 - Probability and Statistics

Final Exam Solutions
5 January 2025


Problem 1. [10pt] The joint pdf of random variables X and Y is given by:

c if (x, y) ∈ S,
fX,Y (x, y) =
0 otherwise,

where c is a constant and S is the set shown in the plot.




(a) Find the least mean square (LMS) estimator g(X) of Y .



0.5 if X ∈ [0, 1] ∪ [2, 3] ,
E[Y |X] =
1 if X ∈ [1, 2].


Before we start solving the problem, let us first find the value of c. Since the joint distribu-
1
tion fX,Y (x, y) is uniform over the region S, we have c = area(S) = 14 .

The optimal LMS estimator is given by g(X) = E[Y |X]. For that, we will characterize
E[Y |X = x]. When 0 < x < 1 and 2 < x < 3, the conditional distribution of Y given X = x,
that is fY |X (y|x) is a uniform distribution in [0, 1]. Thus, when 0 < x < 1 and 2 < x < 3,
E[Y |X = x] = 0.5. On the other hand, when 1 < x < 2, fY |X (y|x) is a uniform distribution
in [0,2]. Thus, when 1 < x < 2, E[Y |X = x] = 1. As a result, E[Y |X] can be written as:


0.5 if X ∈ [0, 1] ∪ [2, 3] ,
E[Y |X] =
1 if X ∈ [1, 2].


1

, (b) Find the mean squared error of the estimator g(X), i.e., E[(Y − g(X))2 ].


5
E[(Y − g(X))2 ] = 24 .


Next, we will find the mean squared error of the estimator g(X). For that, we will use the
uniform distribution mean and variance. If U is a continuous r.v. in between [a, b], its mean
(b−a)2
and variance is given by E[U ] = a+b2 and Var(U ) = 12 .
We will also utilize the law of iterated expectation for this part in the following form:

E[(Y − g(X))2 ] = E[E[(Y − g(X))2 |X]].

We obtain the marginal distribution of X as

 1 if x ∈ [0, 1] ∪ [2, 3] ,
fX (x) = 4
 1 if x ∈ [1, 2].
2

Thus, we need to find E[(Y − g(X))2 |X = x]. When 0 < x < 1 and 2 < x < 3, g(x) =
E[Y |X = x] = 0.5. Since the conditional distribution of Y given X is a uniform distribution
in [0,1] and g(x) = E[Y |X = x] = 0.5 is its conditional mean, we have E[(Y − g(X))2 |X =
2
x] = V ar(Y |X = x) = (1−0)
12 = 121
. Similarly, when 1 < x < 2, we have E[(Y − g(X))2 |X =
2
x] = V ar(Y |X = x) = (2−0)
12 = 13 . As a result, we have


1

12 if X ∈ [0, 1] ∪ [2, 3] ,
E[(Y − g(X))2 |X = x] =
1 if X ∈ [1, 2].
3

Now, we are ready to find E[(Y − g(X))2 ].
Z 3
2 2
E[(Y − g(X)) ] = E[E[(Y − g(X)) |X]] = E[(Y − g(X))2 |X = x]fX (x)dx
0
Z 1 Z 3 Z 2
1 1 1 1 11
= dx + dx + dx
0 12 4 2 12 4 1 32
1 1 1 5
= + + = .
48 48 6 24




2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Abbyy01 Exam Questions
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
91
Lid sinds
3 jaar
Aantal volgers
33
Documenten
1121
Laatst verkocht
4 weken geleden

3.5

13 beoordelingen

5
5
4
2
3
3
2
1
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen