100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Modelling Computing Systems Chapter 9 Faron Moller & Georg Struth

Rating
2.0
(1)
Sold
-
Pages
5
Uploaded on
22-12-2020
Written in
2020/2021

Logic for Computer Science/Logic for Computer Technology Chapter 9 Summary of the book Modelling Computing Systems written by Faron Moller and Georg Struth. Summary written in English. Using examples and pictures, the substance and theory are clarified. Given at Utrecht University.

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 9
Uploaded on
December 22, 2020
File latest updated on
December 22, 2020
Number of pages
5
Written in
2020/2021
Type
Summary

Subjects

Content preview

Hoorcollege 10(Hoofdstuk 9):

We can then define a functions over N by induction. For example, we may want to compute the sum
of the first n numbers: 1 + 2 + 3 + … + n. We can do so using an inductive definition:

sum(0) = 0

sum(n + 1) = (n + 1) + sum(n).



Claim: For all n, we can show that sum(n) = n×(n+1) 2 . How to prove this? Let’s check that the
equality holds for the first few numbers:

 if n = 0, we have that sum(0) = 0 = (0×1) / 2 .
 if n = 1, we have that sum(1) = 0 + 1 = 1 = (1×2) / 2 .
 if n = 2, we have that sum(2) = 0 + 1 + 2 = 3 = (2×3) / 2 . But we need proof.

Proof by induction:

We defined the set of natural numbers using the following two clauses:

 0∈N
 for any n ∈ N, the number (n + 1) ∈ N.

To show that some property P holds for all natural numbers, it suffices to show:

 P(0)
 for all n, if we assume that P(n) we need to show that P(n + 1)



Example proof by induction where we will proof the base case and inductive case as well:

Claim: For all n, we can show that sum(n) = n×(n+1) 2 . Proof: We prove this statement by induction
on n.

 if n = 0, we need to show that sum(0) = (0×1) / 2 .
 Suppose that n = k + 1 and that sum(k) = (k×(k+1)) / 2 .

We need to show sum(k + 1) = (k+1)(k+2) / 2 .

Base Case proof: If n = 0, we need to show that sum(0) = (0×1) / 2 . Using the definition of sum, we
know that sum(0) = 0 = (0×1) / 2 as required. This completes the base case.

Inductive case proof: Suppose that that sum(k) = (k×(k+1)) / 2 . We need to show sum(k + 1) = ((k+1)
(k+2)) / 2 :

Reviews from verified buyers

Showing all reviews
4 year ago

2.0

1 reviews

5
0
4
0
3
0
2
1
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
luukvaa Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
760
Member since
7 year
Number of followers
589
Documents
12
Last sold
1 week ago

Welkom op mijn stuvia pagina! Kijk gerust rond welke samenvattingen op dit moment op mijn pagina staan. Gedurende elk jaar zullen er weer nieuwe samenvattingen verschijnen, dus neem af en toe een kijkje en klik op het knopje \'\'volgen\". Succes met studeren!

4.0

284 reviews

5
108
4
102
3
58
2
5
1
11

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions