SOLUTION MANUAL
,
,Automatic Control Systems, 10th Edition Chapter 2 Solutions Golnaraghi, Kuo
Chapter 2
2‐1 (a) Poles: s = 0, 0, 1, 10; (b) Poles: s = 2, 2;
Zeros: s = 2, , , . Zeros: s = 0.
The pole and zero at s = 1 cancel each other.
(c) Poles: s = 0, 1 + j, 1 j; (d) Poles: s = 0, 1, 2, .
Zeros: s = 2.
2-2) a) ܩሺݏሻ ൌ ሺ௦ାଵሻ
௦ሺ௦ାଶሻሺ௦ାଷሻమ
௦
b) ܩሺݏሻ ൌ మ
ሺ௦ାଵሻሺ௦ାସሻ
c) ܩሺݏሻ ൌ ௦మ ିଵ
௦మሺ௦ାଷሻሺ௦ାଵሻమ
2-3)
MATLAB code:
2‐1
,Automatic Control Systems, 10th Edition Chapter 2 Solutions Golnaraghi, Kuo
clear all; s = tf('s')
'Generated transfer function:'
Ga=10*(s+2)/(s^2*(s+1)*(s+10)) 'Poles:'
pole(Ga)
'Zeros:'
zero(Ga)
'Generated transfer function:'
Gb=10*s*(s+1)/((s+2)*(s^2+3*s+2)) 'Poles:';
pole(Gb)
'Zeros:'
zero(Gb)
'Generated transfer function:' Gc=10*(s+2)/(s*(s^2+2*s+2))
'Poles:';
pole(Gc)
'Zeros:'
zero(Gc)
'Generated transfer function:' Gd=pade(exp(-
2*s),1)/(10*s*(s+1)*(s+2)) 'Poles:';
pole(Gd)
'Zeros:'
zero(Gd)
2‐2
,Automatic Control Systems, 10th Edition Chapter 2 Solutions Golnaraghi, Kuo
Poles and zeros of the above functions:
(a)
Poles: 0 0 ‐10 ‐1
Zeros: ‐2
(b)
Poles: ‐2.0000 ‐2.0000 ‐1.0000
Zeros: 0 ‐1
(c)
Poles:
0
‐1.0000 + 1.0000i
‐1.0000 ‐ 1.0000i
Zeros: ‐2
Generated transfer function:
(d) using first order Pade approximation for exponential term Poles:
0
‐2.0000
‐1.0000 + 0.0000i
‐1.0000 ‐ 0.0000i
Zeros:
1
2‐3
,Automatic Control Systems, 10th Edition Chapter 2 Solutions Golnaraghi, Kuo
2-4) Mathematical representation:
In all cases substitute ݏൌ ݆߱ and simplify. The use MATLAB to verify.
10 22 1 2
2
102 2
R ;
2 2
( 1)( 2 100)
10( j 2)
2
( j 1)( j 10) tan 1 2 2
2
10( j 2) ( j 1)( j 10)
1 2
2 2 2
2
( j 1)( j 10) ( j 1)( j 10)
10( j 2)( j 1)( j 10)
a) 2 2
( 1)( 2 100) tan 1 12
2 1
j 2 j 1 j 10 12
R 2 2
2 1 2 102 2
R(e j 1 e j 2 e j 3 ) tan 1 102 2
3
10
102 2
1 2 3
2 2
10 1 9
R ;
( 2 1)2 ( 2 9)
10
( j 1) ( j 3) 2
tan 1 12
1 1
10 ( j 1)( j 1)( j 3)
12
( j 1)( j 1)( j 3) ( j 1)( j 1)( j 3)
10( j 1)( j 1)( j 3) 12
b) tan 1
( 2 1) 2 ( 2 9) 2 1
R
j 1 j 1 j 3 12
1 2 1 2 9 2
1
R(e j 1 e j 2 e j 3 ) 3 tan 9 2
3
9 2
1 2 3
2‐4
,Automatic Control Systems, 10th Edition Chapter 2 Solutions Golnaraghi, Kuo
10
j ( j2 2 2 )
10 j (2 2
j2 )
( j2 2 2 ) (2 2
j2 )
10( 2 (2 2 ) j)
c)
(4 2 (2 2 )2 ) 2
2 (2 ) j
R
4 2 (2 2 )2
R(e j )
10 4 2 (2 2 2
)
R 10
;
(4 2
(2 2 2
)) 4 2 (2 2 )2
2 2
tan 1 4 2 (2 2 )2
2
4 (2 2 )2
2
1
R ;
2 2 2
e 2j
10 2 1
10 j ( j 1)( j 2) 2 2 2
j( j 1)(2 j 2) 22j tan 1 2
d) 10 ( 1)( 2) e 2 2
1 2
j 2 j 1 2j j /2
R e
22 2 1 2
tan 1
12
R(e j 1 e j 2 e j 3 )
2
1
12
1 2 3
MATLAB code:
clear all; s = tf('s')
'Generated transfer function:'
Ga=10*(s+2)/(s^2*(s+1)*(s+10)) figure(1)
2‐5
,Automatic Control Systems, 10th Edition Chapter 2 Solutions Golnaraghi, Kuo
Nyquist(Ga)
'Generated transfer function:'
Gb=10*s*(s+1)/((s+2)*(s^2+3*s+2)) figure(2)
Nyquist(Gb)
'Generated transfer function:' Gc=10*(s+2)/(s*(s^2+2*s+2))
figure(3)
Nyquist(Gc)
'Generated transfer function:' Gd=pade(exp(-
2*s),1)/(10*s*(s+1)*(s+2)) figure(4)
Nyquist(Gd)
Nyquist plots (polar plots):
Part(a)
2‐6
,Automatic Control Systems, 10th Edition Chapter 2 Solutions Golnaraghi, Kuo
Nyquist Diagram
15
10
5
Imaginary Axis
0
-5
-10
-15
-300 -250 -200 -150 -100 -50 0
Real Axis
Part(b)
Nyquist Diagram
1.5
1
0.5
Imaginary Axis
0
-0.5
-1
-1.5
-1 -0.5 0 0.5 1 1.5 2 2.5
Real Axis
Part(c)
2‐7
, THOSE WERE PREVIEW PAGES
TO DOWNLOAD THE FULL PDF
CLICK ON THE L.I.N.K
ON THE NEXT PAGE
2‐8