100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4,6 TrustPilot
logo-home
Summary

Samenvatting Wetenschappelijke Vorming 2 - Statistiek

Rating
4.5
(2)
Sold
5
Pages
105
Uploaded on
21-09-2025
Written in
2024/2025

Deze samenvatting bevat al het materiaal uit de les in een duidelijk overzicht mbv afbeeldingen, tekeningen, oefeningen, berekeningen, ... Punt behaald in eerste zit: 18/20

Institution
Course

Content preview

​Statistiek 2​

,​Herhaling:​​beschrijvende​​en​​inferentiële​​statistiek​​..................................................................​​5​
​Introductie:​​quiz​​.......................................................................................................................​​5​
​Basic​​statistical​​concepts​​.........................................................................................................​​7​
​Sample​​vs​​population​​.........................................................................................................​​7​
​Statisch​​significant​​vs​​klinisch​​relevant​​..............................................................................​​7​
​Methods​​of​​research​​..........................................................................................................​​7​
​Types​​of​​data​​.....................................................................................................................​​8​
​Summarizing​​data​​..............................................................................................................​​8​
​1.​​Measures​​of​​location​​................................................................................................​​8​
​Quartiles​​.......................................................................................................................​​8​
​2.​​Measures​​of​​variation​​...............................................................................................​​9​
​Grafic​​Representation:​​boxplot​​....................................................................................​​9​
​Hypothesis​​testing​​for​​a​​population​​parameter​​........................................................................​​9​
​Algemene​​procedure​​.............................................................................................................​​10​
​1.​​Toetsingsprobleem​​.......................................................................................................​​10​
​2.​​Toetstingsgrootheid:​​een​​gepaste​​test​​statistic​​kiezen​​.................................................​​10​
​3a.​​Beslisregel​​-​​kritisch​​punt​​...........................................................................................​​11​
​3a.​​Beslisregel​​-​​p-waarde​​...............................................................................................​​11​
​Overzicht​​van​​statistische​​testen​​om​​2​​of​​meer​​means/proporties​​te​​vergelijken​​..................​​12​
​Introductie​​........................................................................................................................​​12​
​One-sample​​t-test​​............................................................................................................​​13​
​One-sample​​t-test​​in​​R​...............................................................................................​​14​
​One-sample​​t-test:​​assumpties​​en​​opmerkingen​​.......................................................​​14​
​Paired​​t-test​​......................................................................................................................​​14​
​Paired​​t-test​​in​​R​........................................................................................................​​15​
​Unpaired​​t-test​​.................................................................................................................​​15​
​Unpaired​​t-test​​in​​R​....................................................................................................​​15​
​Unpaired​​t-test​​assumpties​​en​​opmerkingen​​.............................................................​​16​
​One-sample​​z-test​​............................................................................................................​​16​
​One-sample​​z-test​​in​​R​..............................................................................................​​17​
​Two-sample​​z-test​​............................................................................................................​​17​
​Two-sample​​z-test​​in​​R​..............................................................................................​​18​
​Two-sample​​z-test​​......................................................................................................​​18​
​Lineaire​​regressie​​......................................................................................................................​​19​
​Van​​statistische​​testen​​naar​​regressiemodellen​​....................................................................​​19​
​Regressiemodellen​​................................................................................................................​​19​
​Enkelvoudige​​lineaire​​regressie​​.............................................................................................​​20​
​Voorbeeld:​​oestriol​​niveau​​..........................................................................................​​20​
​De​​modelonderstellingen​​.................................................................................................​​21​
​Schatten​​van​​intercept​​en​​richtingscoëfficiënt​​..................................................................​​22​
​In​​R​..................................................................................................................................​​23​


​1​

, ​ erklarende​​statistiek​​voor​​α​​en​​ß​...................................................................................​​25​
V
​F-test​​voor​​enkelvoudige​​lineaire​​regressie​​...........................................................................​​26​
​Voorbeeld​​F​​verdeling​​................................................................................................​​27​
​In​​R:​​opdrachten​​........................................................................................................​​28​
​T-test​​voor​​enkelvoudige​​lineaire​​regressie​​...........................................................................​​29​
​Relatie​​tussen​​T​​test​​en​​globale​​F​​test​​............................................................................​​30​
​Betrouwbaarheidsintervallen​​.................................................................................................​​30​
​BI​​voor​​de​​regressieparameters​​α​​en​​ß​...........................................................................​​30​
​Betrouwbaarheidsband​​....................................................................................................​​32​
​Predictie-interval​​voor​​y​​horende​​bij​​een​​gegeven​​x​​waarde​​.................................................​​32​
​Predictieinterval​​voor​​John:​​........................................................................................​​35​
​Welk​​punt​​zou​​het​​smalste​​BI​​hebben?​​.....................................................................​​35​
​Correlatiecoëfficiënt​​...............................................................................................................​​36​
​In​​R​..................................................................................................................................​​37​
​Verschil​​correlatieanalyse​​en​​enkelvoudige​​lineaire​​regressie​​...................................​​37​
​Verband​​tussen​​b​​en​​r​......................................................................................................​​37​
​Samenvatting​​lineaire​​regressie​​............................................................................................​​38​
​Meervoudige​​regressie​​........................................................................................................​​40​
​De​​regressievergelijking​​...................................................................................................​​40​
​Schatting​​van​​de​​parameters​​...........................................................................................​​41​
​Interpretatie​​van​​regressiecoëfficiënten​​...........................................................................​​41​
​Gestandaardiseerde​​regressiecoëfficiënt​​........................................................................​​42​
​In​​R:​​uitleg​​verschillende​​tekens!​​...............................................................................​​43​
​Voorbeeld​​hypertensie​​...............................................................................................​​44​
​Meervoudig​​lineair​​regressiemodel​​..................................................................................​​44​
​Toetsen​​voor​​de​​hele​​groep​​van​​regressoren​​..................................................................​​45​
​ANOVA​​(analysis​​of​​variance)​​tabel:​​..........................................................................​​46​
​In​​R:​​voorbeeld​​hypertensie​​.......................................................................................​​46​
​Kleine​​ANOVA​​tabel​​voor​​lineair​​regressie​​model​​......................................................​​46​
​Grote​​ANOVA​​tabel​​....................................................................................................​​47​
​Toetsen​​voor​​één​​regressor​​.............................................................................................​​47​
​In​​R:​​...........................................................................................................................​​48​
​De​​partiële​​F-test​​.............................................................................................................​​49​
​In​​R:​​kleine​​ANOVA​​....................................................................................................​​50​
​DUS​​ELR​​vs​​MLR​​Globale​​F​​en​​T​​test​​.............................................................................​​50​
​In​​R:​​grote​​ANOVA​​.....................................................................................................​​51​
​Berekening​​van​​REG​​SS,​​RES​​SS,​​…​.......................................................................​​51​
​EXAMEN:​​.........................................................................................................................​​51​
​Interactie-effecten​​............................................................................................................​​52​
​Categorische​​variabelen​​..................................................................................................​​53​
​Visualisatie​​van​​een​​interactie-effect​​..........................................................................​​54​


​2​

, ​ pdracht​​lineaire​​regressie​​-​​Framingham​​............................................................................​​55​
O
​Examenvoorbeeld​​lineaire​​regressie​​.....................................................................................​​55​
​Veralgemeende​​lineaire​​regressie​​............................................................................................​​56​
​Inleiding​​............................................................................................................................​​56​
​Bernoulli​​verdeling​​(herhaling)​​...............................................................................................​​56​
​Voorbeeld:​​varicella​​....................................................................................................​​57​
​Logistische​​regressie​​.............................................................................................................​​57​
​Veralgemeend​​lineaire​​modellen​​(GLM)​​................................................................................​​59​
​Schatten​​van​​de​​regressieparameters​​in​​GLM​​................................................................​​59​
​Maximum​​likelihood​​methode​​..........................................................................................​​60​
​Maximum​​likelihood​​methode:​​oefening​​.....................................................................​​60​
​Voordeel​​van​​ML​​........................................................................................................​​61​
​Voorbeeld:​​varicella​​....................................................................................................​​61​
​In​​R:​​interpretatie​​.......................................................................................................​​61​
​Interpretatie​​R​............................................................................................................​​62​
​In​​R​............................................................................................................................​​63​
​Wald​​test​​....................................................................................................................​​64​
​Betrouwbaarheidsinterval​​..........................................................................................​​65​
​Predictie​​...........................................................................................................................​​65​
​Voorbeeld​​...................................................................................................................​​66​
​EXAMENVOORBEELD​​OEFENING​​LINEAIRE​​REGRESSIE​​..............................................​​66​
​Samenvatting​​.........................................................................................................................​​67​
​Categorische​​variabelen​​..................................................................................................​​68​
​In​​R:​​...........................................................................................................................​​68​
​Meervoudige​​logistische​​regressie​​........................................................................................​​70​
​R-voorbeeld:​​varicella​​................................................................................................​​70​
​Aikake’s​​Information​​Criterion​​(AIC)​​......................................................................................​​73​
​Samenvatting:​​belangrijk​​om​​te​​weten​​...................................................................................​​73​
​Possoin​​regressie​​..................................................................................................................​​73​
​Voorbeeld:​​aantal​​insecten​​op​​bonenplanten​​.............................................................​​74​
​Poisson​​verdeling​​.............................................................................................................​​74​
​Voorbeeld:​​SENIC​​data​​..............................................................................................​​75​
​Transformatie​​...................................................................................................................​​76​
​Veralgemeende​​lineaire​​modellen​​(GLM)​​........................................................................​​76​
​Voorbeeld:​​SENIC​​data​​..............................................................................................​​77​
​In​​R​............................................................................................................................​​77​
​Interpretatie​​......................................................................................................................​​78​
​Toetsen​​van​​hypothese:​​Wald-test​​...................................................................................​​78​
​Interpretatie​​......................................................................................................................​​79​
​Categorische​​variabelen​​..................................................................................................​​79​
​R-voorbeeld​​SENIC:​​regio​​(eigenlijk​​al​​een​​meervoudig​​model)​​................................​​79​


​3​

, ​ ergelijking​​met​​logistische​​regressie​​........................................................................​​80​
V
​Meervoudige​​Poisson​​Regressie​​.....................................................................................​​80​
​R-voorbeeld:​​SENIC​​..................................................................................................​​81​
​Samenvatting​​types​​...................................................................................................................​​83​
​Overlevingsanalyse​​en​​Cox​​regressie​​.....................................................................................​​84​
​Overlevingsanalyse​​...............................................................................................................​​84​
​Definitie​​en​​notatie​​.....................................................................................................​​85​
​Belangrijke​​concepten​​I​...................................................................................................​​85​
​Belangrijke​​concepten​​II​​..................................................................................................​​86​
​Voorbeeld​​...................................................................................................................​​86​
​Overlevingsfunctie​​of​​-curve​​............................................................................................​​87​
​Overlevingsanalyse​​met​​censurering​​...............................................................................​​89​
​Types​​van​​censurering​​...............................................................................................​​89​
​Rechtse​​censurering​​........................................................................................................​​91​
​Voorbeeld​​...................................................................................................................​​91​
​Voorbeeld:​​Duur​​van​​remissie​​in​​een​​klinische​​..........................................................​​91​
​Niet-parametrische​​schatting​​van​​S(t*)​​......................................................................​​92​
​Overlevingsfunctie​​in​​geval​​van​​censurering:​​Kaplan-Meier​​............................................​​92​
​Voorbeeld​​...................................................................................................................​​94​
​In​​R​............................................................................................................................​​95​
​In​​R:​​Kaplan-meier​​.....................................................................................................​​96​
​Vergelijken​​van​​overlevingsfuncties​​.................................................................................​​96​
​Regressie​​voor​​overlevingsanalyse​​.......................................................................................​​98​
​Cox​​proportional​​hazards​​model​​......................................................................................​​98​
​Schatten​​van​​de​​regressieparameters​​.............................................................................​​98​
​Interpretatie​​......................................................................................................................​​99​
​Proportional​​hazards​​assumptie​​......................................................................................​​99​
​Coxmodel​​in​​R​.........................................................................................................​​100​
​Predictie​​.........................................................................................................................​​102​
​Overzicht​​..................................................................................................................................​​103​




​4​

,​Herhaling: beschrijvende en inferentiële statistiek​

​Introductie: quiz​
​1.​ ​Which type of data is given in the following examples:​
​○​ ​Male/female ⇒ kwalitatief nominaal​
​○​ ​Number of heart beats per minute ⇒ kwantitatief discreet​
​○​ ​Blood pressure ⇒ kwantitatief continu​
​2.​ ​What is the median value of the observations xi : 80,90,110,125,130,135?​
​⇒ (110+125)/2 = 117,5​
​3.​ ​How does the previous result change when adding an observation 140 to the​
​aforementioned series? ⇒ mediaan = 125​
​4.​ ​How do you calculate the sample mean and variance of the series?​
​⇒ variantie = waarde van spreiding​
​○​ ​Waarden groter dan gem ⇒ pos bijdrage​
​○​ ​Waarden kleiner dan gem ⇒ neg bijdrage​
​⇒ niet handig dus kijken naar​​gekwadrateerde vorm​​v variantie​​en dan delen door n-1​
​⇒ s² volgt een verdeling ⇒ geheel is stochastisch​




​5.​ ​Explain the difference between Xi and xi ?​
​○​ ​Grote x: verdeling van alle mogelijke steekproef varianties = verdeling f​
​○​ ​Kleine x: één waarde uit die verdeling (getal)​
​6.​




​5​

,​7.​
​ een ongepaarde T-test of twee steekproeven T-test: er vanuit gaan dat normaal​

​verdeeld EN de variantie gelijk verdeeld is​




​8.​
​ binaire uitkomst: 0 of 1 (ja of nee) DUS guy kwadraat test: wat is de proportie van​

​mensen die influenza krijgen in verschillende samenlevingen​




​6​

,​Basic statistical concepts​

​Sample vs population​
​Population​
​●​ ​A population refers to a​​well-defined group of subjects​​in which the researcher is​
​interested from a scientific point of view​
​●​ ​Often, a population is​​too large​​(or even infinite)​​to examine all subjects (too expensive,​
​too time-consuming, ...)​
​Sample​
​●​ ​A sample is a​​finite collection of study subjects​​for which observed characteristics and​
​response values are recorded​
​●​ ​Sample needs to be​​representative​​in order to provide​​valid inference at the population​
​level​


​Statisch significant vs klinisch relevant​
​Statistical significant:​
​●​ ​Statistical significance is based on measurements, observations, numbers, ...​
​●​ ​Statistical expertise is required​
​Clinical relevant:​
​●​ ​Which research questions are relevant to answer?​​Is​​het verschil betekenisvol?​
​●​ ​Clinical relevance is determined using​​domain-specific​​expertise​
​●​ ​Medical doctor, clinical investigator, lab-researcher, ...​
​⇒Statistical significant ≠ clinical relevant​


​Methods of research​
​Two large groups of research/studies:​
​1.​ ​Experimental studies​
​○​ ​Studying the​​effect of a treatment​
​○​ ​Example: Clinical trials​
​■​ ​Randomisation​
​■​ ​Blinding​
​■​ ​Placebo​
​○​ ​Aim: Does a causal relationship exist?​
​2.​ ​Observational studies​
​○​ ​No active intervention​
​○​ ​Example: Has smoking an effect on the development of lung cancer?​
​○​ ​In general no conclusions about causal relationships, only​​evidence of potential​
​associations​




​7​

, ​Types of data​
​Qualitative data:​
​●​ ​Nominal data​​: categorical data used to classify an​​object of characteristic, e.g., gender,​
​group membership, diagnosis​
​●​ ​Ordinal data​​: categorical data with specific ordering,​​e.g., opinion polls asking whether​
​we strongly disagree, disagree, agree or strongly agree​
​Quantitative (numeric) data:​
​●​ ​Discrete data​​: measurement or count (ordered) data​​for which values cannot lie​
​arbitrarily close to each other, e.g., the number of pregnancies of a woman​
​●​ ​Continuous data​​: measurement data which could take​​all values within a range, e.g.,​
​individual’s weight, or length​


​Summarizing data​
​1.​ ​Measures of location:​
​○​ ​(arithmetic) mean​
​○​ ​median​
​○​ ​(quartiles)​
​2.​ ​Measures of variation:​
​○​ ​variance and standard deviation​
​○​ ​range​
​○​ ​interquartile range (IQR)​

​1. Measures of location​
​ ean​
M
​The (arithmetic) mean x of numeric observations x1,...,xn is given by ⇒​

​ edian​
M
​The median of a series of n numeric observations is, after ordering of the values in this series,​
​●​ ​the middle value, if n is an odd number,​
​●​ ​the arithmetic mean of the two middle numbers, if n is even​

I​n case of observations in the following frequency table (n observations; p​
​different values of x) then the arithmetic mean is given by:​



​Quartiles​
​ ​ ​the​​first quartile Q1​​is the number with rank (n+1)/4​

​●​ ​the​​second quartile Q2​​is the number with rank (n+1)/2​
​●​ ​the​​third quartile Q3​​is the number with rank 3(n+1)/4​
​Non-rationale ranks:​




​8​

Written for

Institution
Study
Course

Document information

Uploaded on
September 21, 2025
File latest updated on
January 28, 2026
Number of pages
105
Written in
2024/2025
Type
Summary

Subjects

$16.39
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Document also available in package deal

Reviews from verified buyers

Showing all 2 reviews
1 week ago

2 months ago

4.5

2 reviews

5
1
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
peeterseva Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
62
Member since
4 months
Number of followers
4
Documents
24
Last sold
5 hours ago

4.7

11 reviews

5
8
4
3
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions