100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Business Research Methods - prof Cleeren

Rating
3.0
(1)
Sold
5
Pages
30
Uploaded on
21-12-2020
Written in
2020/2021

The documents are fully written in English. I made 2 separate documents, one summary for Prof Cools and one for prof Cleeren. This contains all the relevant information that is needed for the exam in January. - Also have a look at my profile for other summaries.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 21, 2020
Number of pages
30
Written in
2020/2021
Type
Summary

Subjects

Content preview

BRM – Cleeren



1. Linear regression analysis
1.1 When to use a linear regression?
Linear regression versus logistic regression?
* Categorical variables need to be
converted to dummy variables
(binary: 1/0)!




Dependent variable: Metric or nominal (in logistics)

Independent variable: always Metric or Categorical
Metric: countable variable (you can count with these numbers).
Categorical: male and female, all kinds of values are possible, isn’t a number (you can’t count with it).
You assign a number to the group but the number doesn’t mean anything, random choice of
numbers.

Linear regression versus ANOVA?
* Categorical variables need to be
converted to dummy variables
(binary: 1/0)!




Dependent variable: both Metric
Independent variable: different

Exercise
Dependent variable: “a person´s decision to
buy a private (store) label” ≠ Metric = Nominal
(2 groups → binary)

Independent variable: “consumer
characteristics” ≠ not metric = categorical

→ Test: Binary logistic regression




1

, Dependent variable: “a person´s attitude
towards buying private (store) label” = Likert
scale → considered a Metric variable.

Independent variable: “consumer
characteristics” ≠ not metric = categorical

→ Test: Linear regression

Dependent variable: “a person´s attitude
towards buying private (store) label” =
Nominal (>2 groups)

Independent variable: “consumer
characteristics” ≠ not metric = categorical

→ Multinomial logistic regression


1.2 Creating dummy variables
• Transform categorical independent variables into dummy (1/0) variables (aka indicator
variables) in a linear (and logistic) regression
• Dummy variable trap!
o = if you would include as many dummies as response categories → you create perfect
multicollinearity, you can perfectly predict values of last category based on values of
other categories. If male = 1 → female will be 0.
o # dummies = # response categories – 1
▪ You should include 1 dummy less than the number of response categories.

HOW: Tabulate X, generate(X)

Example linear regression




2

, Control variable = which we know will influence
dependent variable/results, but we are not really
interested in their effect (there will not be a
hypothesis on this). If we do not include them →
omitted variable bias. They will be treated as
independent variables.

Subscript (i) = level of observation !


1.3 Linear regression in Stata
HOW: Regress

1.3.1 Model diagnostics – Steps
• Step 1: Check assumptions (if necessary, apply corrections)
o Assumption 1: Causality.
o Assumption 2: Were all relevant variables included?
o Assumption 3: Metric dependent variable.
o Assumption 4: Linear relationship between dependent and independent variables.
o Assumption 5: Additive relationship between dependent and independent variables.
o Assumption 6: Residuals need to be independent, normally distributed, homoscedastic,
without autocorrelation.
o Assumption 7: Enough observations
o Assumption 8: No multicollinearity
o Assumption 9: No extreme values
• Step 2: Check ‘meaningfulness’ of model (model fit); H0: R² = 0
• Step 3: Interpret the coefficients of each independent variable; H0: bi = 0

Step 1: check assumptions
ASSUMPTION 1: CAUSALITY
• Independent variables (RHS) should be causing the dependent variable.

ASSUMPTION 2: ALL RELEVANT VARIABLES
• No extreme clusters & No striking patterns
HOW: residuals versus fitted (rvf) plot - Predicted variables against residuals

ASSUMPTION 6: NORMAL DISTRIBUTION OF RESIDUALS
HOW visually: Histogram of residuals – should be normally distributed
PP-plot (probability-plot) – should be normally distributed

HOW statistically: Shapiro’s Wilk normality test – H0: residuals normally distributed
! You don’t want to reject H0, residuals will then be normally distributed.

• If violated: check why the standard errors are not normally distributed:
o Problem in model -> fix it!
o Dependent variable not normally distributed -> transformation of dependent variable
(logarithm, square, root)
• Important: if you use a transformation, it has implications for the interpretation of the results !!
(interpret in function of transformed variable).

• If the sample size is large enough → violation of normal distribution usually not a problem


3
$10.87
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Document also available in package deal

Reviews from verified buyers

Showing all reviews
3 year ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
hwstudent2 Universiteit Gent
Follow You need to be logged in order to follow users or courses
Sold
136
Member since
7 year
Number of followers
105
Documents
20
Last sold
11 months ago

3.7

14 reviews

5
5
4
3
3
3
2
3
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions