Please check the examination details below before entering your candidate information
Candidate surname Other names
Centre Number Candidate Number
Pearson Edexcel International Advanced Level
Thursday 30 May 2024
Morning (Time: 1 hour 30 minutes) Paper
reference WMA13/01
Mathematics
International Advanced Level
Pure Mathematics P3
You must have: Total Marks
Mathematical Formulae and Statistical Tables (Yellow), calculator
Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical formulae
stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• Fill in the boxes at the top of this page with your name,
centre number and candidate number.
• clearly
Answer all questions and ensure that your answers to parts of questions are
labelled.
• – there may
Answer the questions in the spaces provided
be more space than you need.
• working may not gain
You should show sufficient working to make your methods clear. Answers without
full credit.
•Information
Inexact answers should be given to three significant figures unless otherwise stated.
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 9 questions in this question paper. The total mark for this paper is 75.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over
P75709RA
©2024 Pearson Education Ltd. *P75709RA0132*
F:1/1/1/1/1/1/
,1.
y
DO NOT WRITE IN THIS AREA
y = f (x)
P
O x
Figure 1
Figure 1 shows a sketch of the graph with equation y = f (x) where
f (x) = 2| x – 5| + 10
The point P, shown in Figure 1, is the vertex of the graph.
DO NOT WRITE IN THIS AREA
(a) State the coordinates of P
(2)
(b) Use algebra to solve
2| x – 5| + 10 > 6x
(Solutions relying on calculator technology are not acceptable.)
(2)
(c) Find the point to which P is mapped, when the graph with equation y = f (x) is
transformed to the graph with equation y = 3f (x – 2)
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
2
*P75709RA0232*
, 2 x2 " 5x # 8
2. g( x) !
x"2
DO NOT WRITE IN THIS AREA
(a) Write g (x) in the form
C
Ax ! B !
x"2
where A, B and C are integers to be found.
(3)
(b) Hence use algebraic integration to show that
#
8
g( x) dx ! α " β ln 3
4
where α and β are integers to be found.
(4)
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4
*P75709RA0432*
Candidate surname Other names
Centre Number Candidate Number
Pearson Edexcel International Advanced Level
Thursday 30 May 2024
Morning (Time: 1 hour 30 minutes) Paper
reference WMA13/01
Mathematics
International Advanced Level
Pure Mathematics P3
You must have: Total Marks
Mathematical Formulae and Statistical Tables (Yellow), calculator
Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation,
differentiation and integration, or have retrievable mathematical formulae
stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• Fill in the boxes at the top of this page with your name,
centre number and candidate number.
• clearly
Answer all questions and ensure that your answers to parts of questions are
labelled.
• – there may
Answer the questions in the spaces provided
be more space than you need.
• working may not gain
You should show sufficient working to make your methods clear. Answers without
full credit.
•Information
Inexact answers should be given to three significant figures unless otherwise stated.
•• AThere
booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
are 9 questions in this question paper. The total mark for this paper is 75.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over
P75709RA
©2024 Pearson Education Ltd. *P75709RA0132*
F:1/1/1/1/1/1/
,1.
y
DO NOT WRITE IN THIS AREA
y = f (x)
P
O x
Figure 1
Figure 1 shows a sketch of the graph with equation y = f (x) where
f (x) = 2| x – 5| + 10
The point P, shown in Figure 1, is the vertex of the graph.
DO NOT WRITE IN THIS AREA
(a) State the coordinates of P
(2)
(b) Use algebra to solve
2| x – 5| + 10 > 6x
(Solutions relying on calculator technology are not acceptable.)
(2)
(c) Find the point to which P is mapped, when the graph with equation y = f (x) is
transformed to the graph with equation y = 3f (x – 2)
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
2
*P75709RA0232*
, 2 x2 " 5x # 8
2. g( x) !
x"2
DO NOT WRITE IN THIS AREA
(a) Write g (x) in the form
C
Ax ! B !
x"2
where A, B and C are integers to be found.
(3)
(b) Hence use algebraic integration to show that
#
8
g( x) dx ! α " β ln 3
4
where α and β are integers to be found.
(4)
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4
*P75709RA0432*