100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Physical Chemistry for Food Scientists FPH-10803

Rating
-
Sold
1
Pages
7
Uploaded on
16-12-2020
Written in
2018/2019

Short summary Physical Chemistry for Food Scientists

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 16, 2020
Number of pages
7
Written in
2018/2019
Type
Summary

Subjects

Content preview

Physical chemistry for food scientists

Lecture 1

Types of systems:
- Open system (mass and energy exchange)
- Closed system (energy exchange but no mass exchange)
- Isolated system (no mass exchange and no energy exchange)

Types of processes:
- Isothermal (constant temperature)
- Isobaric (constant pressure)
- Isochoric (constant volume)

Volume = V = m3
Molar volume = v = m3/mol

Intensive variables – do not change when the size of the system changes (e.g. p, T)
Extensive variables – do change when the size of the system changes (e.g. V, n, U)

State variable – thermodynamic variable with specific value in every thermodynamic state of system (e.g. p, T, V,
n, U) (bijv. afstand hemelsbreed)
Not state variable – thermodynamic variable that depends on process (e.g. Q, W) (bijv. afgelegde afstand)

! To distinguish between pure components and components that are mixtures, we add an asterisk * to the pure
component.

Four basic laws of thermodynamics:
0th law – If two bodies are each in thermal equilibrium with a third body, it follows that the first two bodies are in
thermal equilibrium with each other
1st law – Energy is conserved (energy can be transformed from one form into another, but the total energy is
constant; energy is never created or destroyed)
2nd law – Heat always flows from a hot to a cold body
3rd law – Absolute zero temperature (K=0) can never be reached

Ideal gas law – pV = nTR
p = pressure, V = volume, n = number of moles, T = temperature, R = gas constant (8,314)
The ideal gas law is only valid when the atoms are very small and have no interaction with each other
v = V/n (pV = nTR becomes pv = RT)

Lecture 2




Coexistence curves = phase boundaries – the solid lines that separate the different regions in the phase diagram
(boiling curve, melting curve & sublimation curve)
Latent heat – the heat that is necessary to induce the phase transition

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
rtew Wageningen University
Follow You need to be logged in order to follow users or courses
Sold
50
Member since
5 year
Number of followers
39
Documents
19
Last sold
3 months ago

4.3

4 reviews

5
1
4
3
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions