100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (5th Edition) by Richard Haberman – Complete Solutions Manual for All Chapters

Rating
-
Sold
-
Pages
156
Grade
A+
Uploaded on
11-09-2025
Written in
2025/2026

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (5th Edition) by Richard Haberman – Complete Solutions Manual for All Chapters

Institution
Applied Partial Differential Equations, 5th Ed
Course
Applied Partial Differential Equations, 5th Ed











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Applied Partial Differential Equations, 5th Ed
Course
Applied Partial Differential Equations, 5th Ed

Document information

Uploaded on
September 11, 2025
Number of pages
156
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Chapter @ y z 1. @ y z Heat @ y z Equation
Section @ y z 1.2
1.2.9 @ y z (d) @ y z Circular @yzcross @yzsection @yzmeans @yzthat @yzP @ y z = @yz2πr, @yzA @yz= @yzπr2, @yzand @yzthus
@yzP/A @yz= @yz2/r, @yz where @yz r @yzis @yzthe @yzradius. @yzAlso @yz γ @yz= @yz0.


1.2.9 @ y z (e) @ y z u(x, @yzt) @yz= @yzu(t) @yzimplies @yzthat
du 2h
cρ @ y z = @yz— @ y z
u @yz.
dt @ y z r @yz
The @yzsolution @yzof @yzthis @yzfirst-order @yzlinear @yzdifferential @yzequation @yzwith @yzconstant @yzcoefficients,
@yzwhich @yzsatisfies @yzthe @yzinitial @yzcondition @yzu(0) @yz= @yzu0, @yzis
· @yz2h ¸
u(t) @yz= @yzu0 exp —@yz
t
@ y z .
@yzcρr




Section @ y z 1.3
1.3.2 ∂u/∂x @ y z is @ y z continuous @ y z if @ y z K0(x0—) @y z = @yz K0(x0+), @ y z that @ y z is, @ y z if @ y z the @ y z conductivity @ y z is
@ y z continuous.




Section @ y z 1.4
1.4.1 (a) @ y zEquilibrium @ y z satisfies @ y z (1.4.14), @ y z d2u/dx2 @ y z = @ y z 0, @ y z whose @ y z general
@ y z solution @ y z is @ y z (1.4.17), @ y z u @ y z = @ y z c1 @ y z + @yzc2x. @ y z The @yzboundary @yzcondition @yz u(0) @yz=

@yz0 @yzimplies @yzc 1 @yz= @yz0 @yzand @yz u(L) @yz= @yzT @ y z implies @yzc 2 @yz= @yzT@yz/L @yzso @yzthat @yz u @yz= @yzT

@yzx/L.


1.4.1 (d) @ y z Equilibrium @ y z satisfies @ y z (1.4.14), @ y z d2u/dx2 @ y z = @ y z 0, @ y z whose @ y z general
@ y z solution @ y z (1.4.17), @ y z u @ y z = @ y z c1 @ y z + @ y z c2x. @ y z From @yzthe @ y z boundary @ y z conditions,

@ y z u(0) @yz = @yzT @ y z yields @ y z T @ y z = @yzc 1 @ y z and @ y z du/dx(L) @yz = @yz α @ y z yields @ y z α @yz= @yzc 2. @ y z Thus

@ y z u @yz= @yz T @ y z + @yzαx.


1.4.1 (f) @ y z In @yzequilibrium, @yz(1.2.9) @yzbecomes @yzd2u/dx2 @yz= @yz—Q/K0 @yz= @yz—x2 @yz, @yzwhose @yzgeneral
@yzsolution @yz(by @yzintegrating @yztwice) @yzis @yzu @yz= @yz—x /12 @yz+ @yzc 1 @yz+ @yzc 2x. @ y z The @yzboundary
4

@yzcondition @yz u(0) @yz= @yzT @ y z yields @yzc 1 @yz= @yzT @yz, @yzwhile @yz du/dx(L) @yz= @yz0 @yzyields @ y z c2 @ y z =

@ y z L /3. @ y z Thus @ y z u @ y z = @ y z —x /12 @yz + @yz L x/3 @yz + @yzT @yz.
3 4 3


1.4.1 (h) @ y z Equilibrium @yz satisfies @yz d2u/dx2 @ y z = @yz 0. @ y z One @yz integration @yz yields @yz du/dx @yz =
@yz c 2, @yz the @yz second @yz integration @yzyields @yzthe @yzgeneral @yzsolution @yz u @yz= @yzc1 @yz+ @yzc 2x.


x @yz = @yz 0 @yz—: @ y —
z @ y z c2 (c1 T@yz) @ y z = @ y z 0
x @yz= @yzL @yz: @ y z @ y z c2 @yz= @yzα @ y z and @ y z thus @ y z c1 @yz= @yzT @yz + @yzα.
Therefore, @ y z u @yz= @yz (T @ y z + @yzα) @yz+ @yzαx @yz= @yz T @ y z + @yzα(x @yz+ @yz1).
1.4.7 @ y z (a) @ y z For @ y z equilibrium:
d2 u @ y z x2 du
=
—1 @ y z implies @ y z u @yz= @yz — @ y z + @yzc1x @yz+ @yzc2 @ y z and @ y z = @yz —x @yz+ @yzc1.
dx2 2 @ y z dx @ y z
From @yzthe @yzboundary @ yz conditions dx
@yz
du
@yz(0) @yz= @yz1 @ y z and @ y z
dx
du
@yz(L) @yz= @yzβ, @yzc1 @yz= @yz1 @ yz and @ y z —L

@yz+ @yzc1 @yz= @yzβ @ y z which @ y z is @ y z consistent
2


only @ y z if @ y z β @yz+ @yzL @yz —= @yz1. @ y z If @ y z β @ y z = @yz1 @ y z @—y 2z L, @ y z there @ y z /is @— y z an

@ y z equilibrium @ y z solution @ y z (u @yz= @ y z @ y z @ y z @ y z + @yzx @yz+ @yzc2). @ y z If @ y z β @ y z = @yz1 @ y z
x

@ y z L, @yzthere @yzisn’t @yzan @yzequilibrium @yzsolution. @ y z The @yzdifficulty @yzis @yzcaused @yzby @yzthe

@yzheat @yzflow @yzbeing @yzspecified @yzat @yzboth @yzends @yzand @yza @yzsource @yzspecified @yzinside. @ y z An
/
@yzequilibrium @yzwill @yzexist @yzonly @yzif @yzthese @yzthree @yzare @yzin @yzbalance. @ y z This @yzbalance @yzcan

@yzbe @yzmathematically @yzverified @yzfrom @yzconservation @yzof @yzenergy:



1

, ∫ @yzL ∫ @yzL
@yz d @yz du du
cρu @ y z dx @yz= @yz—@yz (0) Q0 @yz dx @yz= @yz—1
dt 0 dx@yz 0 @yz+ @yzβ @yz+ @yzL.
@yz+ @ y z (L) @yz+
If @yzβ @yz+ @yzL @yz= @yz1, @yzthen @yzthe @yz dxtotal
@yz @yz thermal @yz energy @yz is @yzconstant @yz and @yz the @yzinitial @yz energy

@yz= @yzthe @yzfinal @yz energy:

∫ @yzL ∫ @yzL@yzµ @ y z @ y z 2 ¶
x
f@yz(x) — @yz dx, which @yz determines
0 @yzdx @yz= 0 2
@ y z @ y z c2.
+ @yzx
If @ yz β @yz+ @yzL @yz= @yz1, @ y z then @ y z the @ y@z total
y z
@ y z thermal @ y z energy @ y z is @ y z always @ y z changing @ y z in
@yz+ @yzc2
@ y z time @ y z and @ y z an @ y z equilibrium @ y z is @ y z never @yzreached.




2

, Section 1.5
¡ ¢
1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes d rdu = 0. Integrating once yields rdu/dr = c1
dr dr
and integrating a second time (after dividing by r) yields u = c1 ln r + c2. An alternate general solution
is u = c1 ln(r/r1) + c3. The boundary condition u(r1) = T1 yields c3 = T1, while u(r2) = T2 yields
c1 = (T2 — T1)/ ln(r2/r1). Thus, u = ln(r21/r1) [(T2 — T1) ln r/r1 + T1 ln(r2/r1)].

1.5.11 For equilibrium, the radial flow at r = a, 2πaβ, must equal the radial flow at r = b, 2πb. Thus β = b/a.
¡ ¢
1.5.13 From exercise 1.5.12, in equilibrium d r2 du = 0. Integrating once yields r2du/dr = c1 and integrat-
dr dr
ing a second time (after dividing by r2 ) yields u = —c1/r + c2. The boundary condition¡s u(4)¢ = 80
and u(1) = 0 yields 80 = —c1/4 + c2 and 0 = —c1 + c2. Thus c1 = c2 = 320/3 or u = 3203 1 — 1r .




3

, Chapter @yz 2. @ y z Method @yz of @yz Separation @yz of @yz Variables
Section @ y z 2.3 ³ ´
2.3.1 @ y z (a) @ y z u(r, @yzt) @yz= @yzφ(r)h(t) @ry z@yieldsy z dr
dh
@ y z φ@yz @yz= @yz
kh
@ y z @yz @yz r@yz @yz . @ y z Dividing @ y z by
d dφ
kh @ y z dt rφ @yzdr dr
dt
dh @ y z
= @yz—λkh @ y z and @ y z 1 @ y z d dr
³ ´ @yz
@ y z kφh @ y z yields @yz= @yz = @yz—λ @ y z or
1 dh 1 d dφ
dt ³ @´y @yz
z @yz
r @ y z dr @ y z @yz @yz r @yz @yz
@yz



@yz @yz r@yz @yz =@
@yz —λφ.
y
z dr
2 2
d φ @yz
2.3.1 (c) @yz @yz u(x, @yzy) @ y z = @2yφz φ(x)h(y) @ y z yields 2@yzh + @yz φd h @ y z
= @ y z 0. @ y z @yz Dividing @yz by
@ y z φh @ y z yields @ y z = @ y z — @yz = @ y z —λ @ y z or
1 d @ y z 1 @yzd h @ y z
@yz
dx2 dy2 φ @yzdx2 h @ y z dy2
d2 φ
dx2
@yz
= @yz—λφdy@yz2 and
2
@yz
d h @yz
= @yzλh.
4
φ @yz
2.3.1 (e) @yz u(x,@yzt) @yz= @yz
4 φ(x)h(t) @yzyields @yzφ(x)@yz
dh
@ yz = @yzkh(t)@yz
d
. @ y z Dividing @yzby @yzkφh, @yzyields @ y z
1 d φ @yz
@yz = @ y z @yz = @yzλ.
1
@yz dh
@yz
dt dx4 kh @yz dt φ @yzdx4
2 2
φ @yz
2.3.1 (f) @yz u(x,@yzt) @yz= @yzφ(x)h(t) @yzyields
dt2
d
@yzφ(x)@yz2
dx
h @yz
= @yzc2h(t)@yzd . @ y z Dividing
c2 h
@yzby @yzc φh, @yzyields
φ
2
2 2
@ y z
1
@ y z
d h @yz
= @ y z 1 @yzd φ @yz
= @yz—λ. @yz dt2 @yzdx
2


2.3.2 (b) @ y z λ @yz= @yz(nπ/L)2 @ y z
with @yz L @yz= @yz1 @ y z so @ y z that @ y z λ @yz= @yzn2π2, @ y z n @yz= @yz1, @yz2, @yz. @yz. @yz.
2.3.2 (d)
√ √
(i) If @ y z λ @ y z > @ y z 0, @yzφ @ y z = @ y z c1 @yzcos @yz λx @yz+ @yzc2 @yzsin @yz λx.
@ y z φ(0) @ y z = @ y z 0


@ y z implies @ y z c1 @ y z = @ y z 0, @ y z while @ y z

@yz(L) @ y z = @ y z 0 @ y z implies

√ √ dx
c2 λ λL @ y z = @ y z 0. λL @yz= @yz—π/2 @yz+ @yznπ(n @yz= @yz1,@yz2, @yz. @yz. @yz.).
@yzco
@ y z Thus
s
(ii) If @yzλ @yz= @yz0, @yzφ @yz= @yzc1 @yz+ @yzc2x. @ y z φ(0) @yz= @yz0 @yzimplies @yzc1 @yz= @yz0 @yzand @yzdφ/dx(L) @yz=
@yz0 @yzimplies @yzc 2 @yz= @yz0. @ y z Therefore @yzλ @yz= @yz0 @yzis @yznot @yzan @yz eigenvalue.
√ √
(iii) If λ @yz 0,
< @yzlet
λ = —s@yand φ = c1 cosh @yzsx @c2y z + sx. @ ysinh
zφ @yz c1 (0) @yz= @yz 0 @yzimplies
dφ/dx
√ √
z

@yzL = @yz0 @yzand ( @ y z ) @yz= @yz0 @yzimplies @yzc2 s @yzcosh @yz sL @yz= @yz0. @ y z Thus @yzc2 @yz= @yz0
@yzand @yzhence @yzthere @yzare @yzno @yzeigenvalues @yzwith @yzλ @yz< @yz0.


2.3.2 (f) @ y z The @yzsimpliest @yzmethod @yzis @yzto @yzlet @yzx′ @yz= @yzx@yz—@yza. @ y z Then @yzd2φ/dx′2 @yz+@yzλφ @yz= @yz0
@yzwith @yzφ(0) @yz= @yz0 @yzand @yzφ(b@yz— @yza) @yz= @yz0. @yzThus @ yz (from @ y z p. @ y z 46) @yzL @yz= @yzb @yz— @yza

@ y z and @yzλ @yz= @yz[nπ/(b @yz— @yza)] @yz, @ y z n @yz= @yz1, @yz2, @yz. @yz. @yz..
2

Σ ∞ 2
2.3.3 From @yz(2.3.30), @yzu(x,@yzt) @yz= @yz n =1 @yzBn @yzsin @yznπx@yze—k(nπ/L) t. @ y z The @yz initial @yz condition @yz yields
Σ∞ @ y z @ y z L ∫ @yzL @yz
2 @yzcosL@yz3πx @yzn=1
= @yz n L
B @ y z sin @yznπxn@yz. @Lyz From
0
@yz (2.3.35), @yzB @ y z = @yz
L L
2
@yz 2 @yzcos @y
z




@yz
3πx
@yz sin @yznπx @ y z dx.
∫@yzL @yz Σ∞ @ y z @ y z
2.3.4 (a) @ y z @yz Total @yz heat @yz energy @ y z = @yz y z dx @ y z = @ y z cρA @yz
cρuA @ nπ B @ y z e—k(
y z) @ yz
@ t
2
@yz1—cos @yznπ @yz
, @ y z using @ y z (2.3.30)
@yz where @ y z B
n L nπ n
0 n=1 @ y z @ y z
L
satisfies @ y z (2.3.35).
2.3.4 @ y z(b)
heat @ y z flux @ y z to @ y z right @ y z = @yz —K0∂u/∂x
total @ y z heat @ y z flow @ y z to @ y z right¯ @ y z = @ y z —K0A∂u/∂x
∂u ¯
heat @ y z flow @ y z out @ y z at @ y z x ∂x @yz = @yz 0 @yz = @ y z K0A
¯ @yz
@ y z¯x=0
heat @ y z flow x = L) —K0A ∂u
@ y z out @ y z ( @yz=
∂x
∫ @yzL d @yz∫ @yzL @yzu @yzdx @yz= @yzk ∂u @yz¯
L @yz
z= @yz0
@ y z x=
2.3.4 @ y z (c) @ y z From @yzconservationL@yzt@of@y @yzthermal @yzenergy, @ y z
y z yields
=
dt @ yz @ yz 0
@yzk ∂ u @yz(L) @yz— @yzk ∂u @yz(0). @yzIntegrating @yzfrom 4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
StuviaSavvy West Virgina University
View profile
Follow You need to be logged in order to follow users or courses
Sold
21
Member since
6 months
Number of followers
0
Documents
373
Last sold
2 weeks ago
STUVIASAVVY TESTBANKS AND EXAM PRACTICES.

Looking for relevant and up-to-date study materials to help you ace your exams? StuviaSavvy has got you covered! We offer a wide range of study resources, including test banks, exams, study notes, and more, to help prepare for your exams and achieve your academic goals. What's more, we can also help with your academic assignments, research, dissertations, online exams, online tutoring and much more! Please send us a message and will respond in the shortest time possible. Always Remember: Don't stress. Do your best. Forget the rest! Gracias!

Read more Read less
4.0

7 reviews

5
4
4
0
3
2
2
1
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions