100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 5th Edition (Haberman, 2012), Chapter 1-14 | All Chapters

Rating
-
Sold
-
Pages
154
Grade
A+
Uploaded on
04-09-2025
Written in
2025/2026

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 5th Edition (Haberman, 2012), Chapter 1-14 | All Chapters

Institution
Applied Partial Differential Equations, 5th Ed
Module
Applied Partial Differential Equations, 5th Ed











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Applied Partial Differential Equations, 5th Ed
Module
Applied Partial Differential Equations, 5th Ed

Document information

Uploaded on
September 4, 2025
Number of pages
154
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Chapter 1. Heat Equation
Section 1.2
1.2.9 (d) Circular cross section means that P = 2πr, A = πr2, and thus P/A = 2/r, where r is the radius.
Also γ = 0.
1.2.9 (e) u(x, t) = u(t) implies that
du 2h
cρ =— u.
dt r
The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = u0, is
· 2h ¸
u(t) = u0 exp — t .
cρr

Section 1.3
1.3.2 ∂u/∂x is continuous if K0(x0—) = K0(x0+), that is, if the conductivity is continuous.

Section 1.4
1.4.1 (a) Equilibrium satisfies (1.4.14), d2u/dx2 = 0, whose general solution is (1.4.17), u = c1 + c2x. The
boundary condition u(0) = 0 implies c1 = 0 and u(L) = T implies c2 = T /L so that u = T x/L.
1.4.1 (d) Equilibrium satisfies (1.4.14), d2u/dx2 = 0, whose general solution (1.4.17), u = c1 + c2x. From
the boundary conditions, u(0) = T yields T = c1 and du/dx(L) = α yields α = c2. Thus u = T + αx.
1.4.1 (f) In equilibrium, (1.2.9) becomes d2u/dx2 = —Q/K0 = —x2 , whose general solution (by integrating
twice) is u = —x4/12 + c1 + c2x. The boundary condition u(0) = T yields c1 = T , while du/dx(L) = 0
yields c2 = L3/3. Thus u = —x4/12 + L3x/3 + T .
1.4.1 (h) Equilibrium satisfies d2u/dx2 = 0. One integration yields du/dx = c2, the second integration
yields the general solution u = c1 + c2x.
x = 0 : c2 — (c1 — T ) = 0
x = L : c2 = α and thus c1 = T + α.
Therefore, u = (T + α) + αx = T + α(x + 1).
1.4.7 (a) For equilibrium:
d2u x2 du
= —1 implies u = — + c1x + c2 and = —x + c1.
dx2 2 dx
From the boundary conditions dx du
(0) = 1 and dx
du
(L) = β, c1 = 1 and —L + c1 = β which is consistent
2
only if β + L = 1. If β = 1 — L, there is an equilibrium solution (u =— 2x + x + c2). If β /= 1— L,
there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:
∫ ∫ L
d L du du
cρu dx = — (0) + (L) + Q0 dx = —1 + β + L.
dt 0 dx dx 0

If β + L = 1, then the total thermal energy is constant and the initial energy = the final energy:
∫L ∫ Lµ 2 ¶
x
f (x) dx = — + x + c2 dx, which determines c2.
0 0 2

If β + L = 1, then the total thermal energy is always changing in time and an equilibrium is never
reached.


1

, Section # y g 1.5
¡ ¢ #yg
1.5.9 # y g (a) # y g In # y g equilibrium, # y g (1.5.14) # y g using # y g (1.5.19) # y g becomes # y g #yg d
#yg # y g rdu#yg = # y g 0.
dr dr
# y g Integrating # y g once # y g yields # y g rdu/dr # y g = # y g c1
and #yg integrating # y g a # y g second # y g time # y g (after # y g dividing # y g by # y g r) # y g yields # y g u # y g = # y g c1 #ygln #ygr #yg+
#ygc2. # y g An # y g alternate # y g general # y g solution #ygis # y g u # y g = # y g c1 #ygln(r/r1) #yg+ #ygc 3. # y g The

# y g boundary # y g condition # y g u(r1) # y g = # y g T1 # y g yields # y g c3 # y g = # y g T1, # y g while # y g u(r2) # y g = # y g T2
ln(r2/r1)
# y g yields #ygc1 # y g = # y g (T2 # y g — #yg T1)/ #ygln(r2/r1). # y g Thus, # y g u # y g = # y g
1
# y g # y g # y g # y g

#yg[(T2 # y g — #yg T1) #ygln #ygr/r1 # y g + #ygT1 #ygln(r2/r1)].



1.5.11 # y g For # y g equilibrium, # y g the # y g radial # y g flow # y g at # y g r # y g = # y g a, # y g 2πaβ, # y g must # y g equal # y g the # y g radial # y g flow
# y g at # y g r # y g = # y g b, # y g 2πb. # y g Thus # y g β # y g = # y g b/a.

¡ ¢ #yg
1.5.13 # y g From # y g exercise # y g 1.5.12, # y g in # y g equilibrium # y g d #yg # y g r2 #ygdu#yg = # y g 0. # y g Integrating # y g once
#yg

dr dr

#yg yields # y g r2du/dr # y g = # y g c1 # y g and # y g integrat-
ing #yga #yg second #yg time #yg (after #yg dividing #yg by #ygr2 #yg ) #yg yields #yg u #yg= #yg—c1/r #yg+ #ygc2. # y g The #yg boundary
and
#yg condition ¡ = #u(4)
# y g u(1) # ysg#yg y g 0 # y=
¢#ygg yields
#yg80 # y g 80 # y g = # y g —c1/4 #yg + #yg c2 # y g and # y g 0 # y g = # y g —c1 # y g + 1 #yg— .
1
#ygc 2. # y g Thus # y g c1 # y g = # y g c2 # y g = # y g 320/3 # y g or # y g u #y g = # y g
320 #yg
3 r




2

,Chapter 2. #yg # y g Method of #yg #yg Separation of #yg #yg Variables
Section # y g 2.3 ³ ´
2.3.1 # y g (a) # y g u(r, #ygt) #yg= #ygφ(r)h(t) # y gryields # y g dr
# y g φ#yg
dh
#yg= #yg
kh
# y g #yg #yg r #yg #yg . # y g Dividing # y g by
d dφ
kh # y g dt rφ #ygdr dr
dt
dh # y g
= #yg—λkh # y g and # y g 1 # y g d #yg ³dr ´ #yg
dt g yields #yg= #yg = #yg—λ # y g or
1 dh 1 d dφ
# y g kφh # y³ ´ #yg
#yg #yg
#yg #yg r #yg #yg
#y g
r# y g dr # y g

#yg r#yg #yg = #yg—λφ.
#yg
dr
2 2
d φ #yg
2.3.1 (c) #yg #yg u(x, #ygy) # y g = # 2yφg φ(x)h(y) # y g yields2 # y g h + #yg φd h # y g
= # y g 0. # y g #yg Dividing #yg by
# y g φh # y g yields # y g = # y g — #yg = # y g —λ # y g or
1 d # y g 1 #ygd h # y g
#yg
dx2 dy2 φ #ygdx2 h # y g dy2
d2φ
dx2
#yg
= #yg—λφdy 2 and
#yg
2
#yg
d h #yg
= #ygλh.
4
φ #yg
2.3.1 (e) #yg 4 = #ygφ(x)h(t) #ygyields #ygφ(x)#yg
u(x, #ygt) #yg dh
#yg = #ygkh(t)#yg
d
. # y g Dividing #ygby #ygkφh, #ygyields # y g #yg 1
1 d φ #yg
#yg = # y g #yg = #ygλ.
dh
#yg
dt dx4 kh #yg dt φ #ygdx4
2 2
φ #yg
2.3.1 (f) #yg u(x, #ygt) #yg= #ygφ(x)h(t) #ygyields d h #yg
dt2 #ygφ(x)#yg dx2
= #ygc2h(t)#ygd . # y g Dividing
c2h #ygby #yg
φ c φh, #ygyields
2
# y g
1
2 2
# y g
d h #yg
= # y g 1 #ygd φ # y g = #yg—λ. #yg dt2 #ygdx2



2.3.2 (b) # y g λ #yg= #yg(nπ/L)2 # y g
with #yg L #yg= #yg1 # y g so # y g that # y g λ #yg= #ygn2π2, # y g n #yg= #yg1, #yg2, #yg. #yg. #yg.
2.3.2 (d)
√ √
(i) If # y g λ # y g > # y g 0, #ygφ
= # y g c1 #ygcos #yg λx #yg+ #ygc2 #ygsin #yg λx. # y g φ(0)
# y g # y g = # y g 0 # y g implies

# y g c1 # y g = # y g 0, # y g while # y g

#yg(L) # y g = # y g 0 # y g implies

√ √ dx
c2 λ λL # y g = # y g 0. λL #yg= #yg—π/2 #yg+ #ygnπ(n #yg= #yg1, #yg2, #yg. #yg. #yg.).
#ygcos
# y g Thus


(ii) If #ygλ #yg= #yg0,#ygφ #yg= #ygc1 #yg+ #ygc2x. # y g φ(0) #yg= #yg0 #ygimplies #ygc1 #yg= #yg0 #ygand #ygdφ/dx(L) #yg= #yg0
#ygimplies #ygc 2 #yg= #yg0. # y g Therefore #ygλ #yg= #yg0 #ygis #ygnot #ygan #ygeigenvalue.
√ √
(iii) If λ #yg <0, #ygletλ = —s#ygand φ = c1 cosh #ygsx #cy2g + sx. # y gsinh
φ #yg c1 (0) #yg= #ygdφ/dx
0 #ygimplies
√ √
#ygL = #yg0 #ygand ( # y g ) #yg= #yg0 #ygimplies #ygc2 s#ygcosh #yg sL #yg= #yg0. # y g Thus #ygc2 #yg= #yg0
#ygand #yghence #ygthere #ygare #ygno #ygeigenvalues #yg with #ygλ #yg< #yg0.


2.3.2 (f) # y g The #ygsimpliest #ygmethod #ygis #ygto #yglet #ygx′ #yg= #ygx#yg—#yga. # y g Then #ygd2φ/dx′2 #yg+#ygλφ #yg= #yg0
#ygwith #ygφ(0) #yg= #yg0 #ygand #ygφ(b #yg— #yga) #yg= #yg0. #yg Thus #yg (from # y g p. # y g 46) #yg L #yg= #ygb #yg— #yga # y g and

#yg λ #yg= #yg[nπ/(b #yg— #yga)] #yg, # y g n #yg= #yg1, #yg2, #yg. #yg. #yg..
2

Σ ∞ 2
2.3.3 From #yg(2.3.30), #ygu(x,#ygt) #yg= #yg n =1 #ygBn #ygsin #ygnπx#yge—k(nπ/L) t. # y g The #yg initial #yg condition #yg yields
Σ∞ # y g # y g L ∫ #ygL #yg
2 #ygcosL#yg3πx #yg= #yg
n=1 n L
B # y g sin #ygnπx#yg. n# yg From L 0
#yg (2.3.35), #ygB # y g = #yg #yg
L L
2
2 #ygcos #yg3πx #ygsin #yg




nπx
#yg #yg dx.
∫ #ygL #yg Σ∞
e—k( )
#yg #yg
2.3.4 (a) # y g Total # y g heat # y g energy # y g = # y g
#yg nπ # y g =
cρuA # y g dx #yg cρA #yg B #yg
# y
# y g t #yg1—cos #ygnπ #yg
, # y g using # y g (2.3.30) # y g where # y g B g 2
n L nπ n
0 n=1 # y g # y g
L
satisfies # y g (2.3.35).
2.3.4 # y g (b)
heat # y g flux # y g to # y g right # y g = #yg —K0∂u/∂x
total # y g heat # y g flow # y g to # y g right #¯ y g = # y g —K0A∂u/∂x
heat # y g flow # y g out # y g at # y g x #yg∂x= #yg ¯x=00 #yg = # y g K0A∂u#yg¯
# y g¯
heat #yg flow x = L) —K0A ∂u
# yg out # y g ( #yg=
∂x
# y g x=L ∫ #ygL #yg ¯L # y g
2.3.4 # y g (c) # y g From #ygconservation #ygof #ygthermal #ygenergy, ∂x
# y¯g
d
#yg u #ygdx #yg= #ygk ∂u #yg = #ygk∫∂u# y g t # yg ·#yg
dt # y g # y g 0 # y g
0 ∂u
t #y g = ∂#yg
u 0 # y g yields u(x, #yg0) #ygdx (L)
#yg(L) #yg— #ygk #yg(0). #yg Integrating #yg from
∫ #ygL ∫ #yg ∂x #yg
` #yg=
L
˛¸#ygk x ` ˛¸#yg—
x
u(x, #ygt) 3
# y g dx # y g —

, ∂ ¸
∂x ∂x
u (0) dx .
∂x
` 0
˛ ¸ x 0 0 ` ˛¸ # yx g
heat #yg e nergy initial integral integral
at #ygheat #ygof #ygof #ygflow

#ygt #ygenergy #ygflow #ygout #ygat

#ygin #ygat #ygx #yg=

#ygx #yg= #ygL

#ygL


2 √#yg
2.3.8 # y g (a) # y g The #yggeneral #ygsolution dx2 #yg of #ygk
d u #yg
= #ygαu #yg(α #yg> #ygk 0) # yg is # y g u(x)k #yg= #yga #ygcosh #yg α x #yg+
√#ygα
#ygb #ygsinh #yg x. # y g The #yg boundary
condition #ygu(0) #yg= #yg0 #ygyields #yga #yg= #yg0, #ygwhile #ygu(L) #yg= #yg0
#yg yields #ygb #yg= #yg0. # y g Thus #ygu #yg= #yg0.




4
$15.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
TestBanksAdept
2.0
(1)

Get to know the seller

Seller avatar
TestBanksAdept Michigan State University
View profile
Follow You need to be logged in order to follow users or courses
Sold
11
Member since
6 months
Number of followers
0
Documents
322
Last sold
1 week ago
TestBanksAdept Educational Center | Top-Rated Study Guides, Test Banks &amp; Solution Manuals for Nursing, Accounting, Chemistry, Statistics, Biology &amp; Other Subjects

Struggling with tough courses? TestBanksAdept has your back. Why waste time on ineffective study methods when you can rely on expertly crafted guides and solution manuals? Our resources are created by professionals to help you study smarter, retain more, and ace your exams. From Nursing and Accounting to Statistics and Chemistry, TestBanksAdept offers a wide selection of high-quality test banks and solution manuals — all available as instant PDF downloads from original publishers. Join thousands of students taking the smart route to academic success. Start scoring A+ results with TestBanksAdept. Know someone who needs better study tools? Share TestBanksAdept with your mates and help them succeed too.

Read more Read less
2.0

1 reviews

5
0
4
0
3
0
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions