100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Modelling Computing Systems Chapter 2 Faron Moller & Georg Struth

Rating
4.0
(1)
Sold
1
Pages
6
Uploaded on
25-11-2020
Written in
2020/2021

Logic for Computer Science/Logic for Computer Technology Chapter 1 Summary of the book Modelling Computing Systems written by Faron Moller Georg Struth. Summary written in English. Using examples and pictures, the substance and theory are clarified. Given at Utrecht University.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 2
Uploaded on
November 25, 2020
Number of pages
6
Written in
2020/2021
Type
Summary

Subjects

Content preview

Hoofdstuk 2

A set is a collection of objects which typically share a property. The objects belonging to the
collection are individually referred to as its elements or members. The numbers of objects in a set A
is referred to as its cardinality and written as |A|. If there are not too many elements in the set then
it is described by writing its elements in a list between curly braces. Example:

- {false, true}; Cardinality = 2
- {3, 7, 14}; Cardinality = 3
- {red, blue, yellow}; Cardinality = 3
- {Joel, Felix, Oskar, Amanda}; Cardinality = 4

Listing all the elemens can get guite tedious. For lists with a great amount of elements we use the
following notation:

- {1, 3, 5, … , 99} (The set of 50 odd positive integers below 100);
- {a, b, c, .. , z} (The set of 26 letters of the alfabet);
- {2, 3, 5, 7, 11, 13, 17, …} (The infinite set of prime numbers);

But for example, the next element in the sequence after 17 is 21. Perhaps it’s isn’t even a number.
To avoind these kind of problems sets are typically describe not by explicitly listing the elements
between curly braces, but rather by describing the property that the elements share. In general, we
shall describe sets using the following set-builder notation: {x : x has property P}. This set consist of
exactly those elements x which satisfy the property P. More examples:

1. The collection of all beaches on the Gower Peninsula: {b : b is a beach on the Gower Peninsula}.
2. The collection of all people who climbed Mount Kailash: {p : p has climbed Mount Kailash}.
3. The collection of all prime numbers: {n : n is a prime number}.
4. The collection of all sets of people who have a common grandmother: {A : A is a set of people
who share a common grandmother}.



Note that Ø and { Ø} are different sets:
the set Ø contains no elements while
the set { Ø } contains one element,
namely the set Ø itself, and hence is not
the same as the empty set Ø.




A set with exactly one element is called a singleton:

- {a}
- {true}
- {{Wouter}}

Memberships are denoted by ∈. We can write the following propositions about sets:

- If x is an element of the set A, we write x ∈ A
- If x is not an element of the set A, we write x ∉ A

, A set is solely defined but its members, two sets are equal if, and only if, they have the same
elements. When you list the elements of a set, the order in which you list them, and the number of
times you list each element, doesn’t matter. Example:

- {3, 7, 14} = {7, 14, 3, 7, 3}
- {Joel, Felix, Oskar} ≠ {Joel, Felix, Oskar, Amanda}.

When all the elements of a set A are also elements of a set B, we say that A is a subset of B, written
A ⊆ B. More formally: A ⊆ B holds if and only if, for all x:

- x∈A⇒x∈B

We write A ⊈ B when A is not a subset of B; or more formally, ¬(A ⊆ B). If A and B are not equal, we
write A ≠ B. If A ≠ B and A ⊆ B we write A ⊂ B. Then A is a strict subset of B.

If x is an element of the set A x∈A

If x is not an element of the set A x∉A

If A and B are equal A=B
If A and B are not equal A≠B

If A = B and elements A = elements B (Subnet) A⊆B
If An and B are not a subnet A ⊈ B or ¬(A ⊆ B)

If A ≠ B and A ⊆ B (strict subnet) A⊂B



To help visualize a relation between sets, we can draw a Venn
diagram. For example we have the following sets:

1. X = {1, 2, 3, 4, 5}
2. Y = {2, 3, 4}
3. Z= {3, 4, 5, 6}

Here we have set U containing all possible elements (the universe
of discourse) as followed: U = {1, 2, 3, 4, 5, 6, 7, 8, 9,10} which will be the integer from 1 to 10.



The set B is a subset of U (here B drawn in green). The set A
is a subset of B (here A drawn in blue). In this way, we can
refer to the sets corresponding to the different regions of
this diagram, such as:

- the elements of B that are not in A;
- the elements in U that are not in A or B;

Reviews from verified buyers

Showing all reviews
4 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
luukvaa Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
760
Member since
7 year
Number of followers
589
Documents
12
Last sold
1 week ago

Welkom op mijn stuvia pagina! Kijk gerust rond welke samenvattingen op dit moment op mijn pagina staan. Gedurende elk jaar zullen er weer nieuwe samenvattingen verschijnen, dus neem af en toe een kijkje en klik op het knopje \'\'volgen\". Succes met studeren!

4.0

284 reviews

5
108
4
102
3
58
2
5
1
11

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions