100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

WGU C959: DISCRETE MATH I EXAM 2025 QUESTIONS AND ANSWERS

Beoordeling
-
Verkocht
-
Pagina's
27
Cijfer
A+
Geüpload op
13-08-2025
Geschreven in
2025/2026

When an argument has been translated from English using symbols - ANS Form Describes an argument when the conclusion is false in a situation with all the hypotheses are are true - ANS Invalid Describes an argument when the conclusion is true whenever the hypotheses are all true - ANS Valid The final proposition - ANS Conclusion Each of the propositions within an argument - ANS Hypothesis Sequence of propositions - ANS Argument In reasoning whether a quantified statement is true or false, it is a useful way to think of the statement in which universal and existential compete to set the statement's truth value. - ANS Two Player Game A logical expression with more than one quantifier that binds different variables in the same predicate - ANS Nested Quantifier WGU C959: DISCRETE MATH I EXAM 2025 QUESTIONS AND ANSWERS @COPYRIGHT FYNDLAY 2025/2026 Page2 A logical statement whose truth value is a function of one or more variables - ANS Predicate The set of all possible values for the variable - ANS Domain of a variable ∀ "for all" - ANS universal quantifier ∀x P(x) - ANS universally quantified statement For a universally quantified statement, it is an element in the domain for which the predicate is false. - ANS Counterexample ∃ "there exists" - ANS existential quantifier ∃x P(x) - ANS Existentially quantified statement Two types are universal and existential - ANS Quantifier Logical statement including universal or existential quantifier - ANS Quantified Statement A sequence of steps, each of which consists of a proposition and a justification for an argument - ANS Logical proof Has no special properties other than those shared by all elements of the domain - ANS Arbitrary element May have pr

Meer zien Lees minder
Instelling
WGU C959
Vak
WGU C959










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
WGU C959
Vak
WGU C959

Documentinformatie

Geüpload op
13 augustus 2025
Aantal pagina's
27
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

WGU C959: DISCRETE MATH I EXAM
2025 QUESTIONS AND ANSWERS



When an argument has been translated from English using symbols - ANS Form


Describes an argument when the conclusion is false in a situation with all the hypotheses are
are true - ANS Invalid


Describes an argument when the conclusion is true whenever the hypotheses are all true -
ANS Valid



The final proposition - ANS Conclusion



Each of the propositions within an argument - ANS Hypothesis



Sequence of propositions - ANS Argument


In reasoning whether a quantified statement is true or false, it is a useful way to think of the
statement in which universal and existential compete to set the statement's truth value. -
ANS Two Player Game


A logical expression with more than one quantifier that binds different variables in the same
predicate - ANS Nested Quantifier
1Page




@COPYRIGHT FYNDLAY 2025/2026

, A logical statement whose truth value is a function of one or more variables - ANS Predicate



The set of all possible values for the variable - ANS Domain of a variable



∀ "for all" - ANS universal quantifier



∀x P(x) - ANS universally quantified statement


For a universally quantified statement, it is an element in the domain for which the predicate is
false. - ANS Counterexample



∃ "there exists" - ANS existential quantifier



∃x P(x) - ANS Existentially quantified statement



Two types are universal and existential - ANS Quantifier



Logical statement including universal or existential quantifier - ANS Quantified Statement


A sequence of steps, each of which consists of a proposition and a justification for an argument
- ANS Logical proof


Has no special properties other than those shared by all elements of the domain -
ANS Arbitrary element



May have properties that are not shared by all the elements of the domain - ANS Particular
2




element
Page




@COPYRIGHT FYNDLAY 2025/2026

, Statement that can be proven true - ANS Theorem


Series of steps, each of which follows logically from assumptions, or from previously proven
statements, whose final step should result in the statement of the theorem being proven -
ANS Proof



Statements assumed to be true - ANS Axiom


We don't assume anything about it besides assumptions given in the statement of the theorem
- ANS Generic object


If the domain is small, might be easiest to prove by checking each element individually -
ANS Proof by exhaustion


An assignment of values to variables that shows that a universal statement is false -
ANS Counterexample


The hypothesis p is assumed to be true and the conclusion c is proven to be a direct result of
the assumption; for proving a conditional statement - ANS Direct proof


A number that can be expressed as the ratio of two integers in which the denominator is non-
zero - ANS Rational number


Proves a conditional theorem of the form p->c by showing that the contrapositive -c->-p is true
- ANS Proof by contrapositve



2k for some integer k - ANS Even integer
3
Page




@COPYRIGHT FYNDLAY 2025/2026

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Fyndlay Kaplan University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
357
Lid sinds
1 jaar
Aantal volgers
80
Documenten
18668
Laatst verkocht
5 dagen geleden
Scholar\'s Sanctuary.

Explore a Vast Collection of Finely Made Learning Materials.

3.7

68 beoordelingen

5
32
4
8
3
13
2
6
1
9

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen