100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary ARTIFICIAL INTELLIGENCE (AI) ADVANCED NOTES | Comprehensive AI, ML, DL & Research Topics

Beoordeling
-
Verkocht
-
Pagina's
3
Geüpload op
01-08-2025
Geschreven in
2025/2026

These Advanced Artificial Intelligence Notes cover in-depth concepts of AI, Machine Learning, Deep Learning, and modern research areas with real-world applications. Ideal for students, researchers, and professionals preparing for competitive exams, interviews, or AI projects. Key highlights: - Definition, scope, and types of AI (Narrow AI, AGI, Superintelligence) - Core AI subfields: ML, DL, NLP, Computer Vision, Robotics, Expert Systems - Advanced concepts: Generative AI, Transformers, Multi-Agent Systems, Edge AI, Neuromorphic Engineering - Modern AI applications in healthcare, finance, autonomous systems, industrial automation, and generative content creation - Challenges and risks: Bias, ethics, security, workforce impact, and alignment problems - Future trends: AGI, self-optimizing AI, human-AI symbiosis, and global governance frameworks - Ethical & legal issues in AI development and deployment - Advanced research areas: RLHF+, multimodal models, federated learning, swarm intelligence, and self-supervised learning - Popular AI tools, frameworks, and platforms: PyTorch, TensorFlow, Hugging Face, LangChain, OpenVINO, Diffusers These notes are comprehensive, exam-ready, and easy to follow, making them perfect for B.Tech, M.Tech, MCA, Data Science, AI/ML courses, and competitive exams.

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
1 augustus 2025
Aantal pagina's
3
Geschreven in
2025/2026
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

ARTIFICIAL INTELLIGENCE (AI) – ADVANCED NOTES
(BY BRAJESH KATARA)

1. DEFINITION & SCOPE
Artificial Intelligence (AI) refers to the development of computational systems capable of
simulating human cognitive processes such as analytical reasoning, decision-making,
perception, pattern recognition, and language interpretation.
Types of AI:
- Narrow AI (Weak AI): Focused on executing specific tasks with high accuracy (e.g., virtual
assistants, diagnostic AI).
- General AI (Strong AI): Theoretical systems with the capability to perform diverse tasks at
human intelligence levels.
- Superintelligent AI: A future concept where machines could exceed human intelligence
and independently evolve.

2. CORE SUBFIELDS OF AI
(a). Machine Learning (ML): Statistical models that adapt and improve from data
(supervised, unsupervised, semi-supervised, reinforcement learning).
(b). Deep Learning (DL): Multilayered neural networks capable of autonomously extracting
features from massive datasets (CNN, RNN, Transformer architectures).
(c). Natural Language Processing (NLP): Computational methods for understanding and
generating human language using semantic and syntactic models.
(d). Computer Vision: AI models that interpret and analyze visual data such as images, 3D
scans, and videos.
(e). Robotics & Autonomous Systems: Intelligent control frameworks enabling real-world
interaction and autonomous decision-making in machines.
(f). Expert & Knowledge-Based Systems: Systems built on domain-specific knowledge
bases for decision automation.

3. KEY ADVANCED CONCEPTS
(a). Generative AI: Advanced algorithms capable of synthesizing original outputs such as
high-fidelity images, videos, text, and code (e.g., Diffusion models, GPT-series).
(b). Transformer-Based Architectures: Large-scale self-attention models for handling
sequential and multimodal data (BERT, LLaMA, GPT-4-class models).
(c). Multi-Agent Intelligence: Networks of autonomous agents collaborating or competing
to achieve complex objectives.
(d). Explainable AI (XAI): AI design methodologies focused on interpretability and
transparent decision-making processes.
(e). Edge AI: Running low-latency AI models directly on end devices or edge servers
without dependence on centralized cloud infrastructure.
(f). Neuromorphic Engineering: Hardware emulation of neural and synaptic architectures
to enable energy-efficient AI computations.

4. MODERN APPLICATIONS
- Healthcare Informatics: AI-assisted medical imaging, personalized treatment strategies,
drug discovery pipelines, genomics analytics.
- Financial Technology (FinTech): Real-time fraud prevention, algorithmic trading, credit
risk modeling, robo-advisors.
- Autonomous Mobility: Self-navigating vehicles, UAVs, and robotics in logistics and
defense.
$8.99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
yashkatara

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
yashkatara Self
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
5 maanden
Aantal volgers
0
Documenten
13
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen