100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

TEST BANK FOR Linear Algebra: A Modern Introduction 5th Edition by David Poole ISBN:978-8214013054 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!NEW LATEST UPDATE!!!!!

Beoordeling
-
Verkocht
-
Pagina's
169
Cijfer
A+
Geüpload op
31-07-2025
Geschreven in
2024/2025

TEST BANK FOR Linear Algebra: A Modern Introduction 5th Edition by David Poole ISBN:978-8214013054 COMPLETE GUIDE ALL CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!!NEW LATEST UPDATE!!!!!

Instelling
Linear Algebra: A Modern Introduction 5th Edition
Vak
Linear Algebra: A Modern Introduction 5th Edition











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Linear Algebra: A Modern Introduction 5th Edition
Vak
Linear Algebra: A Modern Introduction 5th Edition

Documentinformatie

Geüpload op
31 juli 2025
Aantal pagina's
169
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Copyright Cengage Learning. Powered by Cognero
mf mf mf mf mf Page 1
mf


.

, Test Bank For mf mf




Linear Algebra A Modern Introduction 5th Edition by David Poole
mf mf mf mf mf mf mf mf mf mf




Section 1.0 - 1.4 mf mf mf




1. If u • v = 0, then ||u + v|| = ||u – v||.
mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

2. If u • v = u • w, then either u = 0 or v = w.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

3. a • b × c = 0 if and only if the vectors a, b, c are coplanar.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

n
located by the vectors u and v is ||u – v||.
mf

4. The distance between two points in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




a. True
b. False

5. If v is any nonzero vector, then 6v is a vector in the same direction as v with a length of 6 units.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

6. The only real number c for which [c, –2, 1] is orthogonal to [2c, c, –4] is c = 2.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

7. The projection of a vector v onto a vector u is undefined if v = 0.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False


8. The area of the parallelogram with sides a, b, is
mf mf mf mf mf mf mf mf mf m f mf || ||
mf




a. True
b. False

2 2 2 2
, then (a × b • c) = ||a|| ||b|| ||c|| .
mf

9. If a, b, c are mutually orthogonal vectors in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




a. True
b. False

10. For all vectors v and scalars c, ||cv|| = c||v||.
mf mf mf mf mf mf mf mf mf



a. True
b. False
Copyright Cengage Learning. Powered by Cognero
mf mf mf mf mf Page 2
mf


.

, n
11. For all vectors u, v, w in
mf mf mf mf mf mf mf , u – (v – w) = u + w – v.
mf mf mf mf mf mf mf mf mf mf mf




a. True
b. False

12. The projection of a vector v onto a vector u is undefined if u = 0.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

13. The vectors [1, 2, 3] and [k, 2k, 3k] have the same direction for all nonzero real numbers k?
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False

14. If a parity check code is used in the transmission of a message consisting of a binary vector, then the total number
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



of 1’s in the message will be even.
mf mf mf mf mf mf mf



a. True
b. False

15. The distance between the planes n • x = d1 and n • x = d2 is |d1 – d2|.
mf mf mf mf mf mf mf mf mf
mf
mf mf mf mf mf
mf
mf
mf
mf



a. True
b. False

16. The zero vector is orthogonal to every vector except itself.
mf mf mf mf mf mf mf mf mf



a. True
b. False

17. The products a × (b × c) and (a × b) × c are equal if and only if b = 0.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



a. True
b. False




18. Simplify the following vector expression: 4u – 2(v + 3w) + 6(w
mf mf mf mf mf mf mf mf mf mf mf mf mf u).


19. Find all solutions of 3x + 5 = 2 in
mf mf mf mf mf mf mf mf mf mf , or show that there are no solutions.
mf mf mf mf mf mf mf




a. 2
m f



b. 4
m f



c. 6
m f



d. 8
m f




Find the distance between the parallel lines.
mf mf mf mf mf mf mf


20.
and
mf mf




21. Find the acute angle between the planes
mf mf mf mf mf mf mf mf 3 and mf mf .


Copyright Cengage Learning. Powered by Cognero
mf mf mf mf mf Page 3
mf


.

, 22. Find the distance between the planes mf mf mf mf mf mf m f and mf .

23. Find values of the scalar k for which the following vectors are orthogonal.
mf mf mf mf mf mf mf mf mf mf mf mf



u = [k, k, –2], v = [–2, k – 1, 5]
mf mf mf mf mf mf mf mf mf mf mf




24. Simplify the following expressions: mf mf mf



(a) (a + b + c) × c + (a + b + c) × b + (b – c) × a
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



(b) (v + 2w) ∙ (w + z) × (3z + v)
mf mf mf mf mf mf mf mf mf mf




25. Find the check digit that should be appended to the vector u = [2, 5, 6, 4, 5] in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf if the check vector is c = [1, 1, 1, 1,
mf mf mf mf mf mf mf mf mf mf




1, 1]. mf




26. If u is orthogonal to v, then which of the following is also orthogonal to v?
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




27. What is the distance of the point P = (2, 3, –1) to the line of intersection of the planes 2x – 2y + z = –3 and 3x –
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



2y + 2z = –17?
mf mf mf mf mf




28. In a parallelogram ABCD let
mf mf mf mf mf mf = a, mf mf mf b. Let M be the point of intersection of the diagonals. Express
mf mf mf mf mf mf mf mf mf mf mf mf




, mf mf and m f m f as linear combinations of a and b.
mf mf mf mf mf mf




29. Suppose that the dot product of u = [u1, u2] and v = [v1, v2] in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



2 mf

were defined as u · v = 5u1 v1 + 2u2 v2. Consider the following statements for vectors u, v, w, and all scalars c.
mf mf mf mf mf mf mf
mf mf
mf
mf
mf mf mf mf mf mf mf mf mf mf mf mf mf



a. u · v = v · umf mf mf mf mf mf



b. u · (v + w) = u · v + u · w
mf mf mf mf mf mf mf mf mf mf mf mf



c. (cu) · v = c(u · v) mf mf mf mf mf mf



d. u · u ≥ 0 and u · u = 0 if and inly if u = 0
mf mf mf mf mf m f mf mf mf mf mf mf mf mf mf mf mf




30. Find a value of k so that the angle between the line 4x + ky = 20 and the line 2x – 3y = –6 is 45°.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




31. Find the orthogonal projection of v = [–1, 2, 1] onto the xz-plane.
mf mf mf mf mf mf mf mf mf mf mf mf




32. Show that the quadrilateral with vertices A = (–3, 5, 6), B = (1, –5, 7), C = (8, –3, –1) and D = (4, 7, –2) is a square.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




33. If a = [1, –2, 3], b = [4, 0, 1], c = [2, 1, –3], compute 2a – 3b + 4c.
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




3
that is perpendicular to the plane 2x – 3y + 7z –
mf

34. Find the vector parametric equation of the line in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




4 = 0 and which passes through the point P = (l, –5, 7).
mf mf mf mf mf mf mf mf mf mf mf mf mf mf




35. Find all values of k such that d(a, b) = 6, where a = [2, k, 1, –4] and b = [3, –1, 6, –3].
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf




36. Show that if a vector v is orthogonal to two noncollinear vectors in a plane P, then v is orthogonal to every vector in
mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf mf



P.

37. Final all solutions of 7x = 1 in mf mf mf mf mf mf mf mf , or show that there are no solutions.
mf mf mf mf mf mf mf




38. Let u1 and u2 be unit vectors, and let the angle between them be
mf
mf
mf
mf
mf mf mf mf mf mf mf mf mf m f




m f radians. What is the area of the parallelogram whose diagonals are d1 = 2u1 – u2 and d2 = 4u1 –5u2?
mf mf mf mf mf mf mf mf mf mf mf
mf
mf
mf
mf
mf
mf
mf
mf
mf




Copyright Cengage Learning. Powered by Cognero
mf mf mf mf mf Page 4mf


.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MindFuel Harvard University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
41
Lid sinds
8 maanden
Aantal volgers
1
Documenten
397
Laatst verkocht
1 week geleden

4.2

9 beoordelingen

5
5
4
3
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen