Assignment 04
Due 24 September 2025
, Question 1: Power Series Method
Problem: Solve the initial value problem
y ′′ − xy ′ + 4y = 2, y(0) = 0, y ′ (0) = 1
using the power series method.
Step 1: Assume a power series solution.
∞
X
y(x) = an x n
n=0
∞
X ∞
X
′ n−1 ′′
y (x) = nan x , y (x) = n(n − 1)an xn−2
n=1 n=2
Step 2: Substitute into the differential equation.
y ′′ − xy ′ + 4y = 2
∞
X ∞
X ∞
X
n−2 n−1
n(n − 1)an x −x nan x +4 an x n = 2
n=2 n=1 n=0
Step 3: Align powers of x.
Let k = n − 2 in the first sum:
∞
X ∞
X ∞
X
k n
(k + 2)(k + 1)ak+2 x − nan x + 4an xn = 2
k=0 n=1 n=0
Shift index of the second sum to start at n = 0 by defining 0 · a0 = 0. Then:
∞
X
[(k + 2)(k + 1)ak+2 + 4ak − kak ] xk = 2
k=0
∞
X
[(k + 2)(k + 1)ak+2 + (4 − k)ak ] xk = 2
k=0
Step 4: Equate coefficients.
1