100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Lecture notes 0HV110 (BRM3)

Beoordeling
-
Verkocht
2
Pagina's
60
Geüpload op
28-10-2020
Geschreven in
2020/2021

This document contains the lecture notes for all lectures of 0HV110, both for part 1 (by Chris Snijders) and part 2 (by Daniël Lakens). The notes are conveniently divided into weeks, and then ordered into the different lectures by the different teachers. Pro-tip: buy my 0HV110 bundle for a discount on the documents!

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
28 oktober 2020
Aantal pagina's
60
Geschreven in
2020/2021
Type
College aantekeningen
Docent(en)
Lakens, snijders
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

0HV110 - BRM 3

The notes have been ordered as following: per week, then per lecturer and then counting the
lectures. So each lecturer has a lecture which number matches the week number.

Contents
Week 1...................................................................................................................................................4
Lecture 1 Snijders – Introduction lecture...........................................................................................4
Lecture 1 Lakens................................................................................................................................4
Video 1.0 – Intro............................................................................................................................4
Video 1.1 – Frequentism likelihoods Bayesian...............................................................................4
Video 1.2 – What is a p-value........................................................................................................5
Video 1.3 – Type 1 and Type 2 errors............................................................................................6
Assignment 1.1..............................................................................................................................7
Assignment 1.2 – Understanding p-values.....................................................................................8
Week 2.................................................................................................................................................10
Lecture 2 Snijders............................................................................................................................10
Part 1 of Logistic regression.........................................................................................................10
Part 2 of Logistic regression.........................................................................................................11
Hands-on lecture.........................................................................................................................12
Lecture 2 Lakens..............................................................................................................................13
Video 2.1 – Likelihoods................................................................................................................13
Video 2.2 – Binomial Bayesian Inference.....................................................................................13
Video 2.3 – Bayesian thinking......................................................................................................14
Assignment 2.1 – Likelihoods.......................................................................................................15
Assignment 2.2 – Bayesian statistics............................................................................................16
Week 3.................................................................................................................................................17
Lecture 3 Snijders............................................................................................................................17
Part 3 of Logistic regression.........................................................................................................17
Part 4 of Logistic regression.........................................................................................................17
Part 5 of Logistic regression.........................................................................................................18
Hands-on lecture.........................................................................................................................19
Lecture 3 Lakens..............................................................................................................................21
Video 3.1 – Type 1 Errors.............................................................................................................21
Video 3.2 – Type 2 Error control..................................................................................................22
Video 3.3 – Pre-registration.........................................................................................................23
Assignment 3.1 – The positive predictive value...........................................................................24

, Assignment 3.2 – Optional stopping............................................................................................24
Week 4.................................................................................................................................................26
Lecture 4 Snijders - Sneaky Stata.....................................................................................................26
Multiple regression......................................................................................................................26
Hands-on lecture Sneaky Stata....................................................................................................28
Lecture 4 Lakens..............................................................................................................................28
Video 4.1 Effect Sizes...................................................................................................................28
Video 4.2 Cohen’s d.....................................................................................................................29
Video 4.3 Correlations (r values)..................................................................................................30
Assignment 4.1 Effect sizes Cohen’s d and r................................................................................31
Assignment 4.2 Guessing the effect.............................................................................................32
Week 5.................................................................................................................................................32
Lecture 5 Snijders............................................................................................................................32
Multilevel regression part 1 + 2...................................................................................................32
Hands-on lecture on multi-level regression.................................................................................34
Lecture 5 Daniel Lakens...................................................................................................................35
Video 5.1 Confidence intervals....................................................................................................35
Video 5.2 Sample Size Justification..............................................................................................36
Video 5.3 P-curve analysis...........................................................................................................37
Assignment 5.1 – Confidence Intervals and Capture Percentages...............................................38
Assignment 5.2 Random Variation and Power Analysis...............................................................39
Week 6.................................................................................................................................................40
Lecture 6 Chris Snijders....................................................................................................................40
Multilevel regression part 3,4,5...................................................................................................40
Hands-on lecture multi-level regression part 2............................................................................42
Lecture 6 Daniel Lakens...................................................................................................................44
Video 6.1 Philosophy of Science..................................................................................................44
Video 6.2 The null is always false.................................................................................................45
Video 6.3 Theory construction.....................................................................................................46
Assignment 6.1 Equivalence testing.............................................................................................47
Week 7.................................................................................................................................................48
Lecture 7 Chris Snijders....................................................................................................................48
Exploratory factor analysis summary (by James Gaskin)..............................................................48
Factor analysis lecture part 1: introduction factor analysis.........................................................49
Factor analysis lecture part 2: extraction, rotation, calculation...................................................50
Factor analysis lecture part 3: principle component analysis vs factor analysis..........................52

, Factor analysis lecture part 4: assumptions and sample size.......................................................53
Hands-on lecture factor analysis..................................................................................................53
Week 7 Daniel Lakens......................................................................................................................55
Video 7.1 Replications..................................................................................................................55
Video 7.2 Publication bias............................................................................................................56
Video 7.3 Open science................................................................................................................57
Video 7.4 Scientific integrity........................................................................................................59
Assignment 7.2 Applied research ethics......................................................................................59
General take-aways.............................................................................................................................60

, Week 1
Lecture 1 Snijders – Introduction lecture
The homepage of the Canvas page shows the course structure.

Part 1

- Watch pre-recorded lecture before Wednesday each week
- Wednesday live lectures show how exercises should be handled
- Friday morning there is the opportunity to ask questions about all exercises

Part 2

- Nothing live
- Weekly assignment + homework

Lecture 1 Lakens
Video 1.0 – Intro
The part of Lakens in this course is aimed to improve our statistical inferences. This means confusion
is prevented and understanding of statistics is improved.

Problems in science related to statistics nowadays:

- Too small sample sizes
- Flexible analysis of data, resulting in flukes in data interpreted as true effects
- Publication bias: mainly research showing an effect is published, while research not showing
an effect is not

Video 1.1 – Frequentism likelihoods Bayesian
There are often multiple action paths in statistics to find the same result.

- Path of action:
o Use p-values to accept or reject the null hypothesis (Neyman-Pearson)
o Does not say anything about the current test, but gives more information in the long
run
- Path of knowledge: likelihoods
o Plotting the likelihood function of different hypotheses, and use this to find the
likelihood of the data
- Path of belief/ devotion: estimating the data based on prior beliefs
o Bayesian statistics

For this course, each approach can be chosen when seeming most useful, or can even be combined.

Quiz questions
1) If we reject the null hypothesis based on p < alpha, we:
a. Can be certain our conclusions is correct for the current test
b. We can’t know whether we are right or wrong in the current test, but we will not
be wrong too often over a large number of tests
c. Are making a mistake: we should have rejected the alternative hypothesis
2) Which approach allows you to incorporate your prior belief in your statistical inferences?
a. Frequentist statistics
b. Bayesian statistics
c. A likelihood approach
$6.64
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
hildeeschx Technische Universiteit Eindhoven
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
130
Lid sinds
8 jaar
Aantal volgers
108
Documenten
67
Laatst verkocht
2 maanden geleden

4.2

20 beoordelingen

5
11
4
3
3
4
2
2
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen