INSTRUCTOR’S
SOLUTIONS MANUAL
O
BEVERLY FUSFIELD
FD
C ALCULUS & I TS A PPLICATIONS
O
FOURTEENTH EDITION
C
C ALCULUS & I TS A PPLICATIONS ,
B RIEF V ERSION
FOURTEENTH EDITION
Larry J. Goldstein
David C. Lay
David I. Schneider
Nakhlé H. Asmar
Complete Chapter Solutions Manual
are included (Ch 0 to 12)
** Immediate Download
** Swift Response
** All Chapters included
, PR
CONTENTS
Chapter 0 Functions .............................................................................................1
Chapter 1 The Derivative ..................................................................................27
O
Chapter 2 Applications of the Derivative ..........................................................74
Chapter 3 Techniques of Differentiation .........................................................122
FD
Chapter 4 The Exponential and Natural Logarithmic Functions .....................148
Chapter 5 Applications of the Exponential and Natural Logarithm
Functions .........................................................................................178
Chapter 6 The Definite Integral .......................................................................194
O
Chapter 7 Functions of Several Variables .......................................................227
Chapter 8 The Trigonometric Functions .........................................................264
C
Chapter 9 Techniques of Integration ...............................................................283
Chapter 10 Differential Equations .....................................................................323
Chapter 11 Taylor Polynomials and Infinite Series...........................................355
Chapter 12 Probability and Calculus .................................................................377
, PR
Chapter 0 Functions
0.1 Functions and Their Graphs 16. h( s )
s
1. (1 s )
1 1
O
1 1
h 2 2
2. 2 1 1
2 3
2
3
3. 3 32 3
h 12 3
FD
4.
2 1 3 2 2
a 1 a 1
h(a 1)
5. 1 (a 1) a 2
6. 17. f ( x) 3 x 2, h 0
f 3 h 3 3 h 2 9 3h 2 3h 11
O
3 f 3 3 3 2 11
7. [2, 3) 8. 1,
2
f 3 h f 3 3h 11 11 3h
3
C
9. [–1, 0) 10. [–1, 8) h h h
11. , 3 12. 2, 18. f x x 2 , h 0
f 1 h 1 h 1 2h h 2
2
13. f ( x) x 2 3 x
f 1 12 1
f (0) 0 2 3(0) 0
f (5) 5 2 3(5) 25 15 10 2
f 1 h f 1 1 2h h 1
h h
f (3) 3 2 3(3) 9 9 0
2h h 2
2h
f (7) (7) 2 3(7) 49 21 70 h
14. f ( x) x 3 x 2 x 1 19. a. k x x 273
3 2 5933 x 273 x 5660
f (1) 1 1 1 1 0
The boiling point of tungsten is 5660°C.
f (1) (1) 3 (1) 2 (1) 1 0
9
3 2 b. f x x 32
1 1 1 1 9 5
f 1
2 2 2 2 8 9
f x 5660 32 10220
5
f (a) a 3 a 2 a 1
The boiling point of tungsten is 10220°F.
15. f ( x) x 2 2 x 20. a. f (0) represents the number of laptops sold
2 in 2015.
f (a 1) (a 1) 2(a 1)
(a 2 2a 1) 2a 2 a 2 1 b. f (5) 150 2(5) 5 2
f (a 2) (a 2) 2 2(a 2) 150 10 25 185
In 2020, the company will sell 185
(a 2 4a 4) 2a 4 a 2 2a laptops.
8x
21. f ( x)
( x 1)( x 2)
all real numbers such that x ≠ 1, 2 or
, 1 1, 2 2,
1
, 2 Chapter 0 Functions
PR
1 37. positive 38. negative
22. f (t )
t 39. [−1, 3] 40. −1, 5, 9
all real numbers such that t > 0 or 0,
41. , 1 5, 9 42. 1, 5 9,
1
23. g ( x ) 43. f 1 .03; f 5 .037
O
3 x
all real numbers such that x < 3 or , 3 44. f 6 .03
0, .05
FD
4 45. 46. t ≈ 3
24. g ( x)
x ( x 2)
1
all real numbers such that x ≠ 0, –2 or 47. f ( x) x x 2
2
, 2 2, 0 0,
1 25
25. f (3) 3 (3 2)
2 2
O
No, (3, 12) is not on the graph.
48. f(x) = x(5 + x)(4 – x)
f(–2) = –2(5 + (–2))(4 – (–2)) = –36
C
No, (–2, 12) is not on the graph.
3x 1
26. 49. g ( x)
x2 1
3 1 1 2
g 1 1
1 2
1 2
Yes, 1, 1 is on the graph.
x2 4
50. g ( x)
x2
27.
4 2 4 20 10
g 4
42 6 3
1
No, 4, is not on the graph.
4
51. f ( x) x 3
28. f (a 1) (a 1) 3
5
52. f ( x) x
x
5
f (2 h) (2 h)
(2 h)
5 (2 h) 2 1 4h h 2
29. function 30. not a function (2 h) 2h
31. not a function 32. not a function x for 0 x 2
53. f ( x)
33. not a function 34. function 1 x for 2 x 5
35. f 0 1; f 7 1 f (1) 1 1
f (2) 1 2 3
36. f 2 3; f 1 0 f (3) 1 3 4