100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Bouwstenen van het Leven alle stof uitgewerkt

Rating
4.0
(4)
Sold
27
Pages
63
Uploaded on
18-10-2020
Written in
2020/2021

Alle modules op canvas van Bouwstenen van het Leven uitgeschreven. Bevat dus alle kennisclips en e-Learningpagina's. Ook aantekeningen van de werkgroep thermodynamica zitten erin verwerkt. Ik heb zelf dit zelf nog 2 keer doorgenomen en had hierna een 8 gehaald dus denk dat er wel goede info instaat :)

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Unknown
Uploaded on
October 18, 2020
Number of pages
63
Written in
2020/2021
Type
Summary

Subjects

Content preview

Hoofdstuk I: elements & energies
Alle materie op aarde is opgebouwd van elementen. Van alle bekende elementen zijn maar
enkelen te vinden in biologische systemen. Zij vormen moleculen, die volgens de
natuurwetten met elkaar in wisselwerking treden en reageren.

I.1: elements in cells
Atomen bevatten een kern en een elektronenwolk, die de kern omvangt.
Atomen verschillen door het aantal positief geladen elektronen in de kern en
het respectieve aantal negatief geladen elektronen in de wolk. De grote
subatomaire deeltjes (in de kern) geven het atoomnummer en de
atoommassa. Koolstof heeft bijvoorbeeld het atoomnummer 6 en massa 12.

Maar een klein deel van alle gevonden elementen worden in biologische
systemen gevonden.

Het atoomnummer vertelt hoeveel protonen en elektronen zich in de atoomkern bevinden.
Elementen die in cellen worden aangetroffen, hebben de buitenste schillen die niet volledig
zijn gevuld met elektronen → reactief.




Atomen van moleculen zijn verbonden door covalente bindingen. Een enkele covalente
binding is gevormd doordat twee atomen een elektronenpaar delen. Hierdoor kunnen
elektronen hun buitenste schillen vullen (of leegmaken).

Koolstof komt het meeste voor in de biologie. Het heeft 4 elektronen in zijn buitenste schil,
waardoor het 4 elektronen kan verkrijgen of verliezen om de schilverzadiging te bereiken →
tetraëdische opstelling.

Koolstof kan sterke covalente bindingen aangaan met andere
koolstofatomen die onder cellulaire omstandigheden blijven bestaan.

Met één covalente binding tussen twee groepen, kunnen de groepen vrij
roteren. Met meerdere covalente bindingen is dit niet mogelijk.

,C-O-verbindingen zijn veel aanwezig in eiwitten. Carboxylgroepen zijn zuur (kunnen hun
proton verliezen en negatief geladen worden).
C-N-verbindingen worden ook in eiwitten gevonden. Aminogroepen zijn basisch (kunnen een
extra proton accepteren en positief geladen worden).




P-O-verbindingen zijn met name aanwezig in nucleotiden als ATP.




“high-energy” tussen aanhalingstekens, omdat er geen hoge of lage energie is maar een
bepaalde hoeveelheid.

,Zuurstof heeft 6 elektronen in de buitenste schil en kan dus 2 covalente bindingen aangaan.
Afhankelijk van hun algehele architectuur:
-grootte van de elektronenwolk
-afstand van buitenste schil tot kern
-ladingsdichtheid binnen de kern
Zijn atomen min of meer in staat elektronen aan te trekken in covalente bindingen, waarbij
de polariteit beïnvloed wordt = elektronegativiteit.

Verschillen in elektronegativiteit geven de polariteit van bindingen en dus van moleculen,
vanwege een tekort of overmaat aan elektronen in delen van een molecuul.

Voor 2 atomen met een verschillende elektronegativiteit die deelnemen aan een covalente
binding, geeft de tabel het resulterende ionische karakter (polariteit) van diezelfde binding
weer.




In extreme gevallen met grote verschillen in elektronegativiteit kan een
covalente binding veranderen in een ionische binding.

H2O-moleculen zijn niet ionisch maar wel polair. O2-moleculen
(bevatten 2 atomen met dezelfde elektronegativiteit) zijn dit niet. Door
waterpolariteit kunnen chemische reacties in oplossing plaatsvinden.




Waterstof is het kleinste atoom, met maar 1 proton en 1 elektron.
Koolstof- en waterstofatomen vormen koolwaterstoffen (hydrocarbons). Aangezien er
tussen C en H bijna geen verschil is in elektronegativiteit, zijn deze verbindingen apolair en
hydrofoob. Als er verschillen zijn in elektronegativiteit, zijn de resulterende moleculen polair
en hydrofiel, net als water zelf.

Wanneer ze zijn gebonden aan atomen met een hogere
elektronegativiteit, kunnen waterstofatomen
dissociëren als protonen, waardoor hun elektron en dus
een negatieve lading achterblijft. Het proton (H+) zal
zich binden aan een andere partner en een positief geladen verbinding vormen.

, Metalen kunnen betrokken zijn bij redoxreacties. Hierbij worden elektronen geaccepteerd
of gedoneerd:
Fe2+ → Fe3+ + e- oxidatiereactie (Fe verliest elektron, oxidator krijgt elektron)
Fe2+  Fe3+ + e- reductiereactie (Fe krijgt elektron, reductor verliest elektron)




De omzetting van een covalente naar een ionische binding als hierboven beschreven is een
redoxreactie.

I.2: energy
Energie is een fundamentele hoeveelheid die elk system bezit. Hiermee kan je voorspellen
hoeveel werk een systeem kan verrichten of hoeveel warmte het kan produceren in Joule.
Energie kan niet worden opgewekt en het verdwijnt niet. Het kan alleen worden omgezet =
eerste we van thermodynamica.

Internal energy
Thermodynamica verdeeld de wereld in twee entiteiten:
-het systeem: waar we naar kijken (molecuul, cel, organisme, planeet Aarde…)
-de omgeving: de rest van het universum

State variables: beschrijven de staat van een systeem, onafhankelijk van de weg om die
staat te bereiken (druk, volume, massa, temperatuur).

De interne energie van een systeem (U) is vaak lastig te bepalen. In de meeste gevallen
bereken je de verandering in interne energie van het systeem = U, van toestand S (start)
naar toestand E (end): U = UE - US = UEnd - UStart
Net als andere state variables, is U onafhankelijk van de weg van S naar E.

Als je twee verschillende toestanden van een systeem bekijkt, is de toestand met het laagste
energieniveau het meest waarschijnlijk.

Toestand van hoge energie naar lage energie: gebeurt spontaan, energie komt vrijdag
Toestand van lage energie naar hoge energie: werk verrichten, energie nodig

Rots omhoogduwen: potentiele energie beneden is lager dan potentiele energie boven, dus
beneden een hogere waarschijnlijkheid. Er moet namelijk werk verricht worden om de rots
omhoog te tillen (w>0). Dat werk wordt omgezet in de inwendige energie van de rots. Hoe
hoger de rots komt, hoe meer inwendige energie en hoe minder waarschijnlijkheid. Rots
boven: inwendige energie (Epot) gaat eruit als Ekin en wrijving (w<0, q>0), omdat beneden
minder energie in de rots zit = lager energieniveau.

Werk op systeem verrichten: w>0 en warmte in het systeem brengen: q>0.
Werk op omgeving verrichten (door systeem): w<0 en warmte uit het systeem brengen q<0.
U = q + w (q: warmte, w: arbeid/werk)
U = UE - US = UEnd - UStart
$11.96
Get access to the full document:
Purchased by 27 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 4 reviews
3 year ago

I learned this summary before my exam and got a 7.5!

4 year ago

4 year ago

4 year ago

4.0

4 reviews

5
0
4
4
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
sannetouw Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
36
Member since
5 year
Number of followers
33
Documents
3
Last sold
2 year ago

4.0

7 reviews

5
1
4
5
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions