Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Quantitative Research Methods

Note
-
Vendu
6
Pages
31
Publié le
18-10-2020
Écrit en
2019/2020

Includes all of the lecture materials for the course Quantitative Research Methods

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
18 octobre 2020
Nombre de pages
31
Écrit en
2019/2020
Type
Resume

Sujets

Aperçu du contenu

QUANTITATIVE METHODS


BLOCK 1: OLS

1.1. Points of attention
Reliability, internal and external validity
• Operationalisation of theories and concepts
—> concepts/theories —> dimensions —> indicators
• Questionnaire design, measurement and scale construction
• Interpretation
—> correlation vs causality (think through)
—> synthesis and generalisation


1.2. Variable types and methods of analysis
• response variable (dependent variable) vs. explanatory (independent variable)
• manifest variable (measured directly) vs. latent variable (not directly measurable —> need to be studied
on the basis of “help” variables
Features of variables
• qualitative (colours) (non-numeric)
• quantitative —> discrete (numbers of goals) or continuous (grades)


1.3. Types of variables: level of measurement
Measurement levels determine the possibilities of the analysis.
• Numeric information = high information density
• Ideal information = number that can take every value.
• Non-numeric information = more restrictive information
• Variables can take less values, studying the relationship between levels is harder.




1.4. Linear regression: the model
• The conditional expectation of a continuous (dependent) variable Y is expressed as a linear function of
the explanatory variables X1, X2, Xm


1

,• Where Xi1 stands for (Xi1… Xim)
• Specific observations deviate randomly from the expected value so we add a random error term to the
model (E)


1.5. The model graphically




Linear regression: least squares methods (OLS)
• The regression line is estimated with help of the least squared method: take the line, for which te sum of
squared residuals is as small as possible
• Minimise the sum of residuals
• Residual “e” is the difference between the observed and predicted value
• In OLS, the best line is where the sum of the residuals is 0, which means no deviation, prediction is the
same as the actual observation. This is never the case, the model is always a prediction.


1.6. R-squared
To determine whether the line is a good line, we need to understand variance. Variance = how far each
observation is from the mean (the average of the observations)
= sum of the squared difference of the sum of each data point and the mean.
• R-square (goodness-of-fit) measures how well the model fits the observations, the share of the variation
of Y that is explained by the model
• How much (%) is explained by the model
• The share of explained variation out of the total
• The higher the R-square the better


1.7. Check model assumptions (4)
1. The sample consists of independent observations
Meaning that there is no relationship between the dependent variables. This has to do with your research
design.


2. Linear model is suitable
The relationship between de dependent and independent variable is linear.
—> use scatterplot with SPSS




2

,3. The variance of the residuals is equal for all possible values of the dependent variables
Constant variance or homoscedasticity.
—> average parameter effect, by adding 1, this result.




(higher parameter for the end and lower for the beginning. In
this graph, there is an increase in the variance, the dots get
further away from the mean)




4. The residuals are normally distributed
Check this with histograms. They have to be bell-shaped.


1.8. Outliers
• Observations that are shooting out
• Different than the ‘average’ observations
• Outliers can have a big influence on the data outcome
We need to know how these influence our model/parameters.


Tests
• box-plots: show you the extreme observations
• Scatterplots, to identify certain observations
• DF-beta
• Goodness-of-fit measure
• Cooks Distance indicator >1


1.9. Test for Multicollinearity
When there are multiple explanatory variables, there can be a relation between these variables. If the
correlation between these two variables is high, we have a problem. (r <0,8 or 0,9)

3

, Problem:
• Standard errors of regression coefficients increase untrustworthy coefficients
• Limits size of relevance of individual explanatory variables becomes impossible
Rules of thumb for detecting
• VIF: variante inflation factor. Test of the presence of multicollinearity when >10


1.10. Dummy variables
To include qualitative variables in regression




For women:
For men:




When to use dummy variables:
Independent variable Use of dummy variable
continuous not necessary
ordinal not necessary if linear trend
dichotomous yes
nominal (more than 2 categories) create help variables using dummies


1.11. Interaction term
• We speak of an interaction if the effect of an independent variable is influenced by a second
independent variable
• Example: the effect of study hours on grade is different for students with a higher level of prior
education than for students with a lower level of prior education.
• In the linear model an interaction term is added
• When the coefficients of the interaction term is significant, the regression lines are not paralel, we speak
of an interaction.


4
$6.66
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Iriswellen Avans Hogeschool
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
36
Membre depuis
11 année
Nombre de followers
29
Documents
6
Dernière vente
2 année de cela

3.3

3 revues

5
0
4
1
3
2
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions