CIVIL SERVICE EXAM PREP WITH
VERIFIED ANSWERS
Numerator c- ccorrect canswers c-The cwhole cnumber cthat cappears con cthe ctop cof ca
cfraction. c
?/D
Denominator c- ccorrect canswers c-The cnumber cthat cappears con cthe cbottom cof cthe
cfraction. c
N/?
Proper cfraction c- ccorrect canswers c-The cnumerator cis csmaller cthan cthe
cdenominator. c
Ex. c1/2
Improper cfraction c- ccorrect canswers c-The cnumerator cis clarger cthan cthe
cdenominator.
Ex. c2/1
,Mixed cnumbers c- ccorrect canswers c-A cmixed cnumber cconsists cof ca cwhole cnumber
cand ca cproper cfraction. cA cimproper cfraction ccan cbe cwritten cinto ca cmixed cnumber.
How cdo cyou cconvert can cimproper cfraction cinto ca cmixed cnumber? c- ccorrect
canswers c-1. cDivide cthe cnumerator cby cthe cdenominator. cThe cresult cwill cbe ca
cwhole cnumber, cwith cor cwithout ca cremainder.
2. cWrite cthe cwhole cnumber.
3. cIf cthere cis ca cremainder, cwrite ca cfraction cwith cthe cremainder cin cthe cnumerator
cand cthe coriginal cdenominator cin cthe cdenominator. c
Ex. cConvert c17/5 cto ca cmixed cnumber? c
17/5=3 cwith ca cremainder cof c2
17/5=3 c2/5
How cdo cyou cconvert ca cmixed cnumber cinto ca cimproper cfraction? c- ccorrect
canswers c-1. cMultiply cthe cwhole cnumber cin cthe cmixed cnumber cby cthe
cdenominator cof cthe cfraction. c
2. cAdd cthe cresult cto cthe cnumerator cof cthe cfraction.
Ex. cConvert c5 c1/6 cto can cimproper cfraction. c
5x6= c30 c
30+1= c31
5 c1/6= c31/6
When cshould cyou cconvert cmixed cnumbers cinto cimproper cfractions? c- ccorrect
canswers c-Whenever cyou care casked cto cmultiply cor cdivide cmixed cnumbers
How cdo cyou creduce ca cfraction? c- ccorrect canswers c-You creduce ca cfraction cby
cdividing cboth cthe cnumerator cand cthe cdenominator cby ca csingle cvalue cthat cdivides
cevenly cinto cboth cof cthem.
Ex. cReduce c5/10?
Both c5 cand c10 care cdivisible cby c5
5/5=1
10/5=2
5/10= c1/2
Key cwords cfor cequal? c- ccorrect canswers c-Is, care, chas, cwas, cwere, chad
, Key cwords cfor caddition? c- ccorrect canswers c-Sum, ctogether, cmore, ctotal, cgreater,
cor colder cthan
Key cword cfor cmultiplication? c- ccorrect canswers c-Product, ctimes, cof
Keywords cof cdivision? c- ccorrect canswers c-Per, cevenly
Key cwords cof csubtraction? c- ccorrect canswers c-Difference, cless cthan, cfewer, cor
cyounger cthan, cremain, cleft cover
example cof ckey cwords cfor csubtraction. cJacob chas c5 cfewer cthan cLeslie? c- ccorrect
canswers c-Would cbe cLeslie-5=Jacob
Distance cformula cproblems cinclude ckey cwords csuch cas? c- ccorrect canswers c-
speed, cplane, ctrain, cboat, ccar, cwalk, crun, cclimb, cand cswim
Distance cFormula c- ccorrect canswers c-Rate cx cTime c= cDistance
Key cword cin cthe cdistance cformula cprovide c2 cof cthe c3 celements c- ccorrect
canswers c-rate, ctime, cdistance
Plug cthose c2 celements cinto cthe cformula cand csolve cfor cthe cthird
Rate cand ctime chave cto cbe cmeasured cinto ccommon cunits c- ccorrect canswers c-If
cthe crate cis cmeasured cin cmiles cper chour, cthe ctime chas cto cbe cmeasured cin
chours, cnot cminutes cor cdays
2 cways cto csolve cword cproblems c- ccorrect canswers c-1. cTranslate cthe cproblem cinto
can calgebraic cequation cand cthen csolve cfor cthe cmissing cinformation
2. cWork cbackwards cby cplugging cin cone cof cthe canswer cchoices
A cneat ctrick cto csee cif ca cnumber cis cdivisible cby c3. c- ccorrect canswers c-Add call cof
cits cdigits. cIf cthe csum cof cthe cdigits cis cdivisible cby c3, cthe cnumber citself cis
cdivisible cby c3. c
Ex. cIs c132 cdivisible cby c3? c
1+3+2=6 c6/3=2
Which cmeans cthat c132 cis cdivisible cby c3. cThis cmethod calso cworks cfor c9.
Raising cfraction cto chigher cterms c- ccorrect canswers c-It callows cyou cto crewrite ca
cfraction cwith ca clarger cnumerator cand cdenominator
VERIFIED ANSWERS
Numerator c- ccorrect canswers c-The cwhole cnumber cthat cappears con cthe ctop cof ca
cfraction. c
?/D
Denominator c- ccorrect canswers c-The cnumber cthat cappears con cthe cbottom cof cthe
cfraction. c
N/?
Proper cfraction c- ccorrect canswers c-The cnumerator cis csmaller cthan cthe
cdenominator. c
Ex. c1/2
Improper cfraction c- ccorrect canswers c-The cnumerator cis clarger cthan cthe
cdenominator.
Ex. c2/1
,Mixed cnumbers c- ccorrect canswers c-A cmixed cnumber cconsists cof ca cwhole cnumber
cand ca cproper cfraction. cA cimproper cfraction ccan cbe cwritten cinto ca cmixed cnumber.
How cdo cyou cconvert can cimproper cfraction cinto ca cmixed cnumber? c- ccorrect
canswers c-1. cDivide cthe cnumerator cby cthe cdenominator. cThe cresult cwill cbe ca
cwhole cnumber, cwith cor cwithout ca cremainder.
2. cWrite cthe cwhole cnumber.
3. cIf cthere cis ca cremainder, cwrite ca cfraction cwith cthe cremainder cin cthe cnumerator
cand cthe coriginal cdenominator cin cthe cdenominator. c
Ex. cConvert c17/5 cto ca cmixed cnumber? c
17/5=3 cwith ca cremainder cof c2
17/5=3 c2/5
How cdo cyou cconvert ca cmixed cnumber cinto ca cimproper cfraction? c- ccorrect
canswers c-1. cMultiply cthe cwhole cnumber cin cthe cmixed cnumber cby cthe
cdenominator cof cthe cfraction. c
2. cAdd cthe cresult cto cthe cnumerator cof cthe cfraction.
Ex. cConvert c5 c1/6 cto can cimproper cfraction. c
5x6= c30 c
30+1= c31
5 c1/6= c31/6
When cshould cyou cconvert cmixed cnumbers cinto cimproper cfractions? c- ccorrect
canswers c-Whenever cyou care casked cto cmultiply cor cdivide cmixed cnumbers
How cdo cyou creduce ca cfraction? c- ccorrect canswers c-You creduce ca cfraction cby
cdividing cboth cthe cnumerator cand cthe cdenominator cby ca csingle cvalue cthat cdivides
cevenly cinto cboth cof cthem.
Ex. cReduce c5/10?
Both c5 cand c10 care cdivisible cby c5
5/5=1
10/5=2
5/10= c1/2
Key cwords cfor cequal? c- ccorrect canswers c-Is, care, chas, cwas, cwere, chad
, Key cwords cfor caddition? c- ccorrect canswers c-Sum, ctogether, cmore, ctotal, cgreater,
cor colder cthan
Key cword cfor cmultiplication? c- ccorrect canswers c-Product, ctimes, cof
Keywords cof cdivision? c- ccorrect canswers c-Per, cevenly
Key cwords cof csubtraction? c- ccorrect canswers c-Difference, cless cthan, cfewer, cor
cyounger cthan, cremain, cleft cover
example cof ckey cwords cfor csubtraction. cJacob chas c5 cfewer cthan cLeslie? c- ccorrect
canswers c-Would cbe cLeslie-5=Jacob
Distance cformula cproblems cinclude ckey cwords csuch cas? c- ccorrect canswers c-
speed, cplane, ctrain, cboat, ccar, cwalk, crun, cclimb, cand cswim
Distance cFormula c- ccorrect canswers c-Rate cx cTime c= cDistance
Key cword cin cthe cdistance cformula cprovide c2 cof cthe c3 celements c- ccorrect
canswers c-rate, ctime, cdistance
Plug cthose c2 celements cinto cthe cformula cand csolve cfor cthe cthird
Rate cand ctime chave cto cbe cmeasured cinto ccommon cunits c- ccorrect canswers c-If
cthe crate cis cmeasured cin cmiles cper chour, cthe ctime chas cto cbe cmeasured cin
chours, cnot cminutes cor cdays
2 cways cto csolve cword cproblems c- ccorrect canswers c-1. cTranslate cthe cproblem cinto
can calgebraic cequation cand cthen csolve cfor cthe cmissing cinformation
2. cWork cbackwards cby cplugging cin cone cof cthe canswer cchoices
A cneat ctrick cto csee cif ca cnumber cis cdivisible cby c3. c- ccorrect canswers c-Add call cof
cits cdigits. cIf cthe csum cof cthe cdigits cis cdivisible cby c3, cthe cnumber citself cis
cdivisible cby c3. c
Ex. cIs c132 cdivisible cby c3? c
1+3+2=6 c6/3=2
Which cmeans cthat c132 cis cdivisible cby c3. cThis cmethod calso cworks cfor c9.
Raising cfraction cto chigher cterms c- ccorrect canswers c-It callows cyou cto crewrite ca
cfraction cwith ca clarger cnumerator cand cdenominator