Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

MCRS Full Summary Partial Exam 1 (week 1-5 semester1_block1)

Vendu
6
Pages
34
Publié le
13-10-2020
Écrit en
2019/2020

Summary including theoretical section and statistical part of the course MCRS (semester 1 block 2) Include A&B part A-parts are summaries of the book 'Introducing_Communication research' - Donald F.Treadwell B-parts are summaries of the book 'Discovering Statistics Using IBM SPSS' - Andy Field masterclass notes All summaries are self-made and used for my own exam, last year (2019/2020).

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Inconnu
Publié le
13 octobre 2020
Nombre de pages
34
Écrit en
2019/2020
Type
Resume

Sujets

Aperçu du contenu

Summary MCRS 2b [ §1.1-1.6.2 | §1.8-1.8.4 | §1.8.5-1.8.6 | §5.4-5.5 ]
Methods
Theory = an explanation or set of principles that is well substantiated by repeated testing and explains a
broad phenomenon

Theories  data collection and analysis

 Theories lead to data collection/analysis and Data collection/analysis informs theories



Theory and Hypotheses  explain the world

Difference between theory and hypothesis

- Theory explains a wide set of phenomena with small set of well-established principles
- Hypothesis (seeks to) explains a narrower phenomenon and is (yet) untested



- HYPOTHESIS IS A EXPLANTORY STATEMENT ABOUT SOMETHING  BUT NOT
OBSERVABLE ITSELF.
- THE PREDICTION IS NOT THE HYPOTHESIS
- THE PREDICTION = SOMETHING DERIVED FROM HYPOTHESIS THAT
OPERATIONALIZES IT SO YOU CAN OBSERVE THINGS THAT HELP YOU
DETERMINE THE PLAUSIBLITY OF THE HYPOTHESIS




To test hypothesis  move from conceptual domain to observable domain

Scientific statement vs non scientific statement

Scientific  be verified with reference to empirical evidence

Non scientific  cannot be empirically tested

Falsification = Act of disproving a hypothesis or theory

Variables

Hypotheses can be expresses in two variables: 1. Proposed cause 2. Proposed outcome

1. Independent variable = variable thought to be the cause of some effect. Experimental research

, 2. Dependent variable =Variable thought to be affected by changes in an independent variable.
Aka outcome
1. Predictor variable = synonym to independent variable, predict an outcome variable
2. Outcome variable = synonym to dependent variable, change as a function of changes in a
predictor variable

 In experimental work  cause = preditor ; effect = outcome

Related to measurement

Type of categorical variable  binary variable

 Ex. Dead or alive, male or female

Nominal variable  two things equivalent in some sense are given the same name but there are more
than 2 possibilities

Continuous variable  measure any level of precision

Discrete variable  take certain values

Continuous measured  as Discrete

 Ex. We measure age by using years and not including nanoseconds

Discrete measured  as Continuous

 Ex. Number of boyfriends you have is a discrete variable. When for example the magazine
says that the average amount of boyfriends women have in their 20s is 4,6. The variable is
continuous eventhough the averages are meaningless.



Measurement-related issues that could occur:

1. Different sample ( amount, distribution)
2. Different method of measurement



Self report measures  larger measurement error because factors than the one you’re trying to
measure will influence how people respond to our measures

Level of measurement

1. Categorical (entities are divided into distinct categories):
- Binary variable: There are only two categories (e.g., dead or alive).
- Nominal variable: There are more than two categories (e.g.,

whether someone is an omnivore, vegetarian, vegan, or fruitarian).

- Ordinal variable: The same as a nominal variable but the categories

, have a logical order (e.g., whether people got a fail, a pass, a merit

or a distinction in their exam).



2. Continuous (entities get a distinct score):
- Interval variable: Equal intervals on the variable represent equal

differences in the property being measured (e.g., the difference

between 6 and 8 is equivalent to the difference between 13 and

15).

- Ratio variable: The same as an interval variable, but the ratios of

scores on the scale must also make sense (e.g., a score of 16 on an

anxiety scale means that the person is, in reality, twice as anxious as

someone scoring 8). For this to be true, the scale must have a

meaningful zero point.

Validity and reliability

Validity = refers whether an instrument measures what it was designed to measure

- Data recorded simultaneously using the new instrument and existing criteria  said to
assess concurrent validity
- Data used to predict observations at a later point in time  said to assess predictive
validity

Reliability = ability of the measure to produce the same results under the same circumstances

- Test the same group of people twice

, Statistics
Normal distribution  bell shape

Deviation of distribution

1. Skew – lack of symmetry
- Positively skewed: frequent scores
clustered at the lower end
- Negatively skewed: frequent scores
cluster at higher end
2. Kurtosis – pointiness
- Positive kurtosis (leptokurtic): many scores in the tails and pointy
- Negative kurtosis (platykurtic): thin in
the tails flatter than normal

The mode

 Score that occurs most frequently

Calculate:

1. Place data in ascending order
2. Count how many times each score occurs
3. Most occurring score = mode

The median

 Middle score when scores are ranked in order of magnitude

Calculate:

1. Place data in ascending order
2. Find position of the middle score (n)
3. Add one to this value – (n+1)
4. Divide by 2 – (n+1)/2
 Valid for uneven numbers of scores

! for even number of scores see below

 Ex. 22, 40, 53, 57, 93, 98, 103, 108, 116, 121
1. Add up two middle scores - 93 and 98 are the middle  (93+98)
2. Divide by 2 – (93+98)/2 = 95,5
3. Median = 95,5

Characteristics:

- Unaffected by extreme scores
- Relatively unaffected by skewed distribution
$5.39
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Reviews from verified buyers

Affichage de tous les 2 avis
4 année de cela

5 année de cela

5.0

2 revues

5
2
4
0
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
lisajin Universiteit van Amsterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
39
Membre depuis
5 année
Nombre de followers
34
Documents
6
Dernière vente
2 année de cela

3.9

10 revues

5
3
4
4
3
2
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions