Introduction to Statistical Investigations,
i i i i
2nd Edition Nathan Tintle; Beth L. Chance
i i i i i i
Chapters 1 - 11, Complete
i i i i i
FOR iINSTRUCTOR iUSE iONLY
,TABLE OF CONTENTS
i i i
Chapter 1 – Significance: How Strong is the Evidence
i i i i i i i i i
Chapter 2 – Generalization: How Broadly Do the Results Apply?
i i i i i i i i i i
Chapter 3 – Estimation: How Large is the Effect?
i i i i i i i i i
Chapter 4 – Causation: Can We Say What Caused the Effect?
i i i i i i i i i i i
Chapter 5 – Comparing Two Proportions
i i i i i i
Chapter 6 – Comparing Two Means
i i i i i i
Chapter 7 – Paired Data: One Quantitative Variable
i i i i i i i i
Chapter 8 – Comparing More Than Two Proportions
i i i i i i i i
Chapter 9 – Comparing More Than Two Means
i i i i i i i i
Chapter 10 – Two Quantitative Variables
i i i i i i
Chapter 11 – Modeling Randomness
i i i i
FOR iINSTRUCTOR iUSE iONLY
,Chapter 1 i
Note: i i iTE i = i Text ientry TE-N i= iText ientry i- iNumericiMa
i = i Matching MS i = i Multiple iselect
MC i = i Multiple ichoice TF i= iTrue-FalseiE i=
iEasy, iM i= iMedium, iH i= iHard
CHAPTER i1 iLEARNING iOBJECTIVES
CLO1-1: iUse ithe ichance imodel ito idetermine iwhether ian iobserved istatistic iis iunlikely ito ioccur.
CLO1-2: iCalculate iand iinterpret ia ip-value, iand istate ithe istrength iof ievidence iit iprovides iagainstithe inull
ihypothesis.
CLO1-3: iCalculate ia istandardized istatistic ifor ia isingle iproportion iand ievaluate ithe istrength
iofievidence i it iprovides iagainst ia inull ihypothesis.
CLO1-4: iDescribe ihow ithe idistance iof ithe iobserved istatistic ifrom ithe iparameter ivalue ispecifiediby ithe
inull ihypothesis, isample isize, iand ione- ivs. itwo-sided itests iaffect ithe istrength iof ievidence iagainst
ithe i null ihypothesis.
CLO1-5: iDescribe ihow ito icarry iout ia itheory-based, ione-proportion iz-test.
Section 1.1: Introduction to Chance Models
i i i i i
LO1.1-1: iRecognize ithe idifference ibetween iparameters iand istatistics.
LO1.1-2: iDescribe ihow ito iuse icoin itossing ito isimulate ioutcomes ifrom ia ichance imodel iof ithe iran-idom
ichoice i between i two i events.
LO1.1-3: iUse ithe iOne iProportion iapplet ito icarry iout ithe icoin itossing isimulation.
LO1.1-4: iIdentify iwhether ior inot istudy iresults iare istatistically isignificant iand iwhether ior inot
itheichance imodel iis ia i plausible iexplanation ifor ithe idata.
LO1.1-5: iImplement ithe i3S istrategy: ifind ia istatistic, isimulate iresults ifrom ia ichance imodel,
iand icomment ion istrength iof ievidence iagainst iobserved istudy iresults ihappening iby ichance
ialone.
LO1.1-6: iDifferentiate ibetween isaying ithe ichance imodel iis iplausible iand ithe ichance imodel iis itheicorrect
iexplanation ifor ithe iobserved idata.
FOR iINSTRUCTOR iUSE iONLY
, 1-2 Test iBank ifor iIntroduction ito iStatistical iInvestigations, i2nd iEdition
Questions i1 ithrough i4:
Do ired iuniform iwearers itend ito iwin imore ioften ithan ithose iwearing iblue iuniforms iin
iTaekwondo imatches iwhere icompetitors iare irandomly iassigned ito iwear ieither ia ired ior iblue
iuniform? iIn ia isample iof i80 iTaekwondo imatches, ithere iwere i45 imatches iwhere itheired iuniform
iwearer iwon.
1. What iis ithe iparameter iof iinterest ifor ithis istudy?
A. The ilong-run iproportion iof iTaekwondo imatches iin iwhich ithe ired iuniform iweareriwins
B. The iproportion iof imatches iin iwhich ithe ired iuniform iwearer iwins iin ia isample iof
i80iTaekwondo i matches
C. Whether ithe ired iuniform iwearer iwins ia imatch
D. i 0.50
Ans: iA; iLO: i1.1-1; iDifficulty: iEasy; iType: iMC
2. What iis ithe istatistic ifor ithis istudy?
A. The ilong-run iproportion iof iTaekwondo imatches iin iwhich ithe ired iuniform iweareriwins
B. The iproportion iof imatches iin iwhich ithe ired iuniform iwearer iwins iin ia isample iof
i80iTaekwondo i matches
C. Whether ithe ired iuniform iwearer iwins ia imatch
D. i 0.50
Ans: iB; iLO: i1.1-1; iDifficulty: iEasy; iType: iMC
3. Given ibelow iis ithe isimulated idistribution iof ithe inumber iof i―red iwins‖ ithat icould ihappen
iby ichance ialone iin ia isample iof i80 imatches. iBased ion ithis isimulation, iis iour iobserved iresult
istatistically isignificant?
A. Yes, isince i45 iis ilarger ithan i40.
B. Yes, isince ithe iheight iof ithe idotplot iabove i45 iis ismaller ithan ithe iheight iof
itheidotplot iabove i40.
C. No, isince i45 iis ia ifairly itypical ioutcome iif ithe icolor iof ithe iwinner‘s iuniform
iwasidetermined iby ichance ialone.
FOR iINSTRUCTOR iUSE iONLY