100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Lecture notes

functions and grAPHS

Rating
-
Sold
1
Pages
78
Uploaded on
22-06-2025
Written in
2024/2025

IT IS A NOTES OF CLASS 11 FUNCTION AND GRAPHS . this notes are written by me during my schooling time

Institution
Module











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
School year
1

Document information

Uploaded on
June 22, 2025
Number of pages
78
Written in
2024/2025
Type
Lecture notes
Professor(s)
Prashant sir
Contains
11

Subjects

Content preview

Functions and Their Graphs

Jackie Nicholas
Janet Hunter
Jacqui Hargreaves




Mathematics Learning Centre
University of Sydney
NSW 2006




1999
c University of Sydney

,Mathematics Learning Centre, University of Sydney i


Contents
1 Functions 1
1.1 What is a function? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Definition of a function . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 The Vertical Line Test . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Domain of a function . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Range of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Specifying or restricting the domain of a function . . . . . . . . . . . . . . 6
1.3 The absolute value function . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 More about functions 11
2.1 Modifying functions by shifting . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Vertical shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Horizontal shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Modifying functions by stretching . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Modifying functions by reflections . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Reflection in the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Reflection in the y-axis . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Other effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Combining effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Graphing by addition of ordinates . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Using graphs to solve equations . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Even and odd functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 Increasing and decreasing functions . . . . . . . . . . . . . . . . . . . . . . 23
2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Piecewise functions and solving inequalities 27
3.1 Piecewise functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Restricting the domain . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

,Mathematics Learning Centre, University of Sydney ii


4 Polynomials 36
4.1 Graphs of polynomials and their zeros . . . . . . . . . . . . . . . . . . . . 36
4.1.1 Behaviour of polynomials when |x| is large . . . . . . . . . . . . . . 36
4.1.2 Polynomial equations and their roots . . . . . . . . . . . . . . . . . 37
4.1.3 Zeros of the quadratic polynomial . . . . . . . . . . . . . . . . . . . 37
4.1.4 Zeros of cubic polynomials . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Polynomials of higher degree . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Factorising polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Dividing polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 The Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 The Factor Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Solutions to exercises 50

, Mathematics Learning Centre, University of Sydney 1


1 Functions

In this Chapter we will cover various aspects of functions. We will look at the definition of
a function, the domain and range of a function, what we mean by specifying the domain
of a function and absolute value function.


1.1 What is a function?

1.1.1 Definition of a function

A function f from a set of elements X to a set of elements Y is a rule that
assigns to each element x in X exactly one element y in Y .


One way to demonstrate the meaning of this definition is by using arrow diagrams.


X Y X Y
f g
1 5 1 5
2 2 6

3 3 3 3

4 2 4 2




f : X → Y is a function. Every element g : X → Y is not a function. The ele-
in X has associated with it exactly one ment 1 in set X is assigned two elements,
element of Y . 5 and 6 in set Y .

A function can also be described as a set of ordered pairs (x, y) such that for any x-value in
the set, there is only one y-value. This means that there cannot be any repeated x-values
with different y-values.
The examples above can be described by the following sets of ordered pairs.

F = {(1,5),(3,3),(2,3),(4,2)} is a func- G = {(1,5),(4,2),(2,3),(3,3),(1,6)} is not
tion. a function.

The definition we have given is a general one. While in the examples we have used numbers
as elements of X and Y , there is no reason why this must be so. However, in these notes
we will only consider functions where X and Y are subsets of the real numbers.
In this setting, we often describe a function using the rule, y = f (x), and create a graph
of that function by plotting the ordered pairs (x, f (x)) on the Cartesian Plane. This
graphical representation allows us to use a test to decide whether or not we have the
graph of a function: The Vertical Line Test.
$10.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
anshumanrairai

Get to know the seller

Seller avatar
anshumanrairai
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
5 months
Number of followers
0
Documents
1
Last sold
5 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions